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Preface

We are very pleased to host the 36th International Workshop on Statistical Modelling 
(IWSM). This edition of the workshop is the fir t one held in presence after a two-
year hiatus due to the COVID-19 pandemic, and we are delighted to meet in person 
all the attendees in Trieste.
This edition is going to be quite lively, with 60 oral presentations and 53 posters, 
covering a vast variety of topics. The numbers of both the original submissions and 
the final papers are probably higher than we were expecting. Indeed, due to the un-
certainty related to the pandemic trend of this past winter, it was not easy to pre-
dict such good numbers! Luckily, we received a large number of excellent papers, 
and it was challenging for the Scientific Committee to make a selection for the oral 
talks. However, regardless of their final status, all the presentations stand out for 
their noteworthy contribution to statistical modelling, and we hope they can catch 
your interest. As usual, the extended abstracts of the papers are collected in the 
IWSM proceedings, but unlike the previous workshops, this year the proceedings 
will be not printed on paper: the IWSM goes light!
As customary for the IWSM, we have a thrilling group of plenary talks, covering 
various areas of statistics, and we greatly thank the invited speakers Anthony 
Davison, Héléne Jacqmin-Gadda, Ioannis Kosmidis, Claudia Czado and Antonio 
Canale. A special thank goes to Ioannis Ntzoufras and Leonardo Egidi for the short 
course Statistical Modelling of Football Data.
The workshop proudly maintains its almost unique feature of scheduling one ple-
nary session for the whole week. This choice has always contributed to the stimu-
lating atmosphere of the conference, combined with its informal character, encour-
aging the exchange of ideas and cross-fertilization among different areas
As a distinguished tradition of the workshop, student participation has been 
strongly encouraged. This IWSM edition is particularly successful in this respect, 
as testified by the large number of students included in the program. We award 
three students for the best paper, the best oral presentation, and the best poster 
respectively. Furthermore, two student travel grants have been kindly provided by 
the Statistical Modelling Society.
Finally, the organization of this conference is the result of all the hard work of the 
Scientific Committee and the Local Organizing Committee. We eagerly thank all of 
you for your exceptional effo ts to bring IWSM back on track.
Welcome to Trieste, and enjoy the conference.

Nicola, Ruggero and Vito 
Trieste, Udine and Palermo, June 2022
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Bayesian dimensionality reduction

Antonio Canale1

1 Università degli Studi di Padova, Italy

E-mail for correspondence: antonio.canale@unipd.it

Abstract: Modern applications generate highly-complex multidimensional data
whose analysis is inherently cursed by the notorious curse of dimensionality. To
face this phenomenon, it is popular to assume that the data actually lie in a
lower dimensional subspace. Principal component analysis, for example, is an
ubiquitous standard technique building upon such assumption. In this paper I
will review some recent contributions that exploit this idea, under a Bayesian
context. I will focus on some of the fundamentals problems in statistics, and
specifically on density estimation and factor analysis, regression, and clustering.

Keywords: Clustering; Curse of dimensionality; Envelope Models; Factor anal-
ysis; Multivariate regression.

1 Introduction

In many modern applications, it is routine to collect high-dimensional data
yi = (yi1, . . . , yip) for i = 1, . . . , n, with p (dimension of the data) being
larger than the sample size n. For example, in modern biomedical studies
we may have data consisting of a variety of high-dimensional biomarkers for
each single patient in the study. The advances in technology allow, at least
conceptually, to increase p to arbitrarily high values by including multiple
types of data including omics data, medical imaging, monitor information,
etc.
A common problem in high dimensional statistics, which is exacerbated in
these contexts, is the so called curse of dimensionality (Bellman, 1961).
Under the assumption that the data concentrate near a low-dimensional
subspace, dimensionality reduction techniques, mapping each yi in a d≪ p
space, become the standard tools to combat the curse of dimensionality.
For example, principal component analysis and factor analysis are ever-
lasting successfull tools that work under the assumption of linear mapping.
A side benefit of such decompositions is the possibility of interpreting the

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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transformed variables (or latent factors) gaining not only on the side of par-
simony in data modeling but also in a better understanding of the principal
features driving the phenomena under study.
In this paper I will review some recent contributions that specify these
ideas, in a Bayesian context. In Section 2 I will describe a class of infinite
factorization models which exploits the Bayesian learning mechanism in
two respects: through a shrinkage prior to induce a penalty on the mag-
nitude of the latent dimension and through a structured sparsity prior to
emphasize the latent factor interpretability. In Section 3 I will discuss high-
dimensional model-based clustering, showing an underrated aspect of the
curse of dimensionality in these settings. To solve this issue I will present
a first solution based once again on a latent factor representation showing
how to turn the curse of dimensionality into a blessing. Finally, in Section
4, I will discuss issues in multivariate regression where both the response
variable and the regressors are high-dimensional vectors. Specifically, I will
briefly present some preliminary work on Bayesian envelope models and
their extension in the context of Bayesian nonparametric mixtures. The
paper ends with a brief discussion of the open points of the presented ap-
proaches.

2 Factor Analysis

Factorization models are routinely used in psychometrics, biology, market-
ing, and finance both as dimensionality reduction tool and as descriptive
tools linking the p-dimensional numbers of observed variables into a smaller
number of underlying variables which may represent some interpretable
trait for the phenomena under study.
To formalize, consider the following simple Gaussian factor model for yi,

yi = Ληi + ϵi, ϵi ∼ N(0,Σ), (1)

with Λ a p × k loadings matrix, ηi a k dimensional factor, and ϵi a p-
dimensional independent noise. In this context, the dimensionality reduc-
tion is achieved choosing k ≪ p.
Although there is a rich literature on choosing k in factorization models,
selection of k is far from being solved. We focus here on a recent approach
based on over-fitted factorizations, which include more than enough com-
ponents with shrinkage priors adaptively removing unnecessary ones by
shrinking their coefficients close to zero (Bhattacharya and Dunson, 2011;
Legramanti et al., 2020)
Although these approaches are widely used in many applications, they lack
of consideration of possible structured sparsity. In many applications, in-
deed, the p variables may be associated to known chracteristics in the form
of meta covariate. For example, the p variables may correspond to differ-
ent genes in genomic applications which may be associated to known gene
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pathways. Current methodologies, however, focused on priors for Λ that
are exchangeable within columns but clearly genes are not exchangeable.
The idea of using meta covariates is consistent with the group-lasso of Yuan
and Lin (2006) adopted in structured penalized regression. Motivated by
this, in the next section I review a recent approach for Bayesian structured
sparsity in factor loadings introduced by Schiavon et al. (2022).

2.1 Structured Increasing Shrinkage Priors

Following Schiavon et al. (2022), a structured sparsity structure on Λ is
induced through a hierarchical shrinkage prior. Specifically

λjh | θjh ∼ N(0, θjh), θjh = τ0 γhϕjh, (2)

where the local ϕjh, column-specific γh, and global τ0 scales are assigned
suitable independent distributions on [0,∞).
Differently from most of the existing literature on shrinkage priors, Schi-
avon et al. (2022) define a non-exchangeable structure that includes meta
covariates x informing the sparsity structure of Λ. In many applications,
meta covariates provide information to distinguish the p different variables
as opposed to traditional covariates that serve to distinguish the n subjects.
Letting x denote a p × q matrix of such meta covariates, the distribution
for ϕj is defined not depending on the index h and such that

E(ϕjh | βh) = g(xTj βh), βh = (β1h, . . . , βqh)
T , (3)

where xj = (xj1, . . . , xjq)
T denotes the jth row vector of x, and βh are

coefficients controlling the impact of the meta covariates on shrinkage of
the factor loadings in the hth column of Λ.
Schiavon et al. (2022) focus, as default choice, on the following specification:

τ0 = 1, γh = ϑhρh, ϕjh | βh ∼ Ber{logit−1(xT

j βh) cp}, (4)

ϑ−1
h ∼ Ga(aθ, bθ), aθ > 1, ρh = Ber (1− πh) , βh ∼ Nq(0, σ

2
βIq),

and assume for πh = pr(γh = 0) the recent cumulative stick-breaking
process of Legramanti et al. (2020), i.e.

πh =
h∑

l=1

wl, wl = vl

l−1∏
m=1

(1− vm), vm ∼ Be(1, α),

with Be(a, b) indicating the beta distribution with mean a/(a+b), such that
πh+1 > πh is guaranteed for any h = 1, . . . ,∞ and limh→∞ πh = 1 almost
surely. The prior specification is completed assuming Σ = diag(σ2

1 , . . . , σ
2
p)

with σ−2
j ∼ Ga(aσ, bσ) for j = 1, . . . , p.
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2.2 Application to Bird Species Occurence Dataset

Schiavon et al. (2022) illustrate the performance of such structured sparsity
prior in an ecological application. The data consist of an n × p binary
matrix denoting occurrence of p = 50 species in n = 137 sampling areas in
Finland. The model described in previsous section is generalized for these
binary data through a multivariate probit regression model and specialized
for the specific application as follows:

yij = I(zij > 0), zij = wT
i µj + ϵij , ϵi ∼ Np(0,ΛΛ

T + Ip), (5)

where wT
i is the ith row of a matrix of location-specific covariate matrix

w, zij ∈ R is a latent continuous variable underlying yij , and the resid-
ual vector ϵi is modelled as multivariate normal, with dependence across
species characterized via the factor analytic term ΛΛT . The coefficients µj

characterize impact of the environmental covariates w on the species occur-
rence probabilities. Meta covariate matrix is available and includes species
traits as mean body mass, migratory strategy, and a 7-level superfamily
indicator. Such exogenous information is used to model Λ as discussed in
previous section.
To appreciate the informative value of the induced sparsity patterns, Fig-
ure 1 reports the estimated Λ and meta covariate coefficients β obtained by
Schiavon et al. (2022). For details on the point estimation procedure refer
to Section 3.3 therein.
The loadings matrix is quite sparse, indicating that each latent factor im-
pacts a small group of species. Positive sign of the loadings means that
high levels of the corresponding factors increase the probability of observ-
ing birds from those species. Lower elements of β, represented with light
cells on the right panel, induce higher shrinkage on the corresponding group
of birds. To facilitate interpretation, the rows of Λ are ordered according to
the most relevant species traits in terms of shrinkage, which are migration
strategy and body mass. The first factor impacts mainly the species charac-
terized by short distance or resident migratory strategies and a larger body
mass. The strongly negative value of β suggests heavier species of birds tend
to have loadings close to zero for the second factor. This is also true for the
third factor, which also does not impact short-distance migrants.

3 Clustering

Bayesian clustering is typically based on mixture models of the form:

yi ∼ f, f(y) =
k∑

h=1

πhK(y; θh), (6)

where k is the number of components, π = (π1, . . . , πk)
T are probability

weights, K(y; θh) is the density of the data within component h, and the
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FIGURE 1. Posterior point estimate of Λ and β. The rows of the left matrix
refer to the 50 birds species considered; the rows of the right matrix refer to
the ten species traits considered. Light coloured cells of β induce shrinkage on
corresponding cells of Λ.

number of clusters in data corresponds to the number of occupied compo-
nents kn ≤ k. When p is large and yi ∈ Rp, a typical approach chooses
K(y; θh) as a multivariate Gaussian density with a constrained and par-
simonious covariance. To avoid to pre-specify k a priori, one can exploit
a mixture of finite mixture model (Miller and Harrison, 2018; Frühwirth-
Schnatter et al., 2021) or let k = ∞ as done in Bayesian nonparametrics.
When p is very large, however, several problems arise. Celeux et al. (2018)
show that the posterior of kn can concentrate on large values, often the
posterior mode of kn is even equal to n so that each subject is assigned
to its own singleton cluster. The authors also conjectured that this aber-
rant behavior is mainly due to slow mixing of Markov chain Monte Carlo
(MCMC) samplers. Chandra et al. (2022), instead, show that this behavior
is not just related to the MCMC. They show that for p → ∞ and n fixed
the posterior distribution on the space of partitions, under different as-
sumptions on the kernel and regardless of the true data generating model,
degenerates to two degenerate clustering. In particular, depending on the
choice of kernel and base measure, the posterior may assign probability one
to either kn = 1 or kn = n. For a formal description of the problem see
Theorem 1 in Chandra et al. (2022).
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3.1 Latent Factor Mixture for Bayesian Clustering

To overcome these problems Chandra et al. (2022) propose a general class
of LAtent factor Mixture models for Bayesian clustering (Lamb) defined as

yi ∼ f(yi; ηi, ψ), ηi ∼
∞∑
h=1

πhK(ηi; θh), (7)

where ηi = (ηi1, . . . , ηid)
T are d-dimensional latent variables, f(·; ηi, ψ) is

the density of the observed data conditional on the latent variables and
measurement parameters ψ and K(·; θ) is a d-dimensional kernel density.
As default example, consider

yi ∼ Np(Ληi,Σ), ηi ∼
∞∑
h=1

πhNd(µh,∆h), (8)

where Σ = diag(σ2
1 , . . . , σ

2
p) is a p × p diagonal matrix, and Λ is a p × d

matrix of factor loadings. The key idea is to incorporate all the cluster-
specific parameters at the latent data level instead of the observed data
level to favor parsimony. The proposed solution have some similarities with
the models presented by Galimberti et al. (2009), Baek et al. (2010), and
Montanari and Viroli (2010). These contributions, starting from different
motivations, proposed similar latent factor mixture models as (8) albeit
with additional constraints.
Notably, the curse of dimensionality described in Theorem 1 of Chandra et
al. (2022) is not present in this model specification. Indeed d here is fixed
and the clustering is performed on this d dimensional latent space. Thus,
also considering the limit for p → ∞, the posterior distribution on the
clustering is not affected by the aberrant behavior described in Theorem 1.
Moreover, Chandra et al. (2022) introduce the notion of oracle clustering
that is the probability distribution on the space of partition that one should
obtain with a perfect knowledge of the latent factor η in (8). Under the
Lamb model the limit p → ∞ turns to be a bless of dimensionality as
discussed in Theorem 2 of Chandra et al. (2022).

3.2 Application to ScRNASeq Cell Line Dataset

Chandra et al. (2022) illustrate the performance of Lamb in a genomic ap-
plication. Specifically they analyze a single cell RNA-seq dataset containing
630 cells from 7 cell lines and p = 7,666 genes. The known cell types are
used as benchmark to assess performance in clustering.
Figure 2 reports the obtained clustering in a UMAP projection (McInnes
et al., 2018). The proposed Lamb achieves an adjusted Rand index of 0.977
with a 95% credible interval equal to [0.900, 0.985]. The posterior proba-
bility of having between 11 and 13 clusters is 0.98. This suggests that the
posterior distribution is highly concentrated, which is consistent with the
simulations presented in Section 5 of Chandra et al. (2022).
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FIGURE 2. UMAP plots of the cell line dataset: Clusterings corresponding to
the true cell-types and Lamb estimate

4 Multivariate Regression

In multivariate regression, we model the dependence of a r-dimensional
response y from a p-dimensional vector of covariates X. Specifically

yi = µ+ βXi + εi, i = 1, . . . , n, (9)

where clearly β is a r×p matrix of regression coefficients and ε is a random
noise with variance Σ. In modern applications both r and p may be large.
Envelope models (Cook et al., 2010; Cook and Zhang, 2015) are a class of
models that express β as a product of two matrices of smaller dimensions,
consistently with what is done in factorization models as discussed in the
previous section.
The rationale behind envelope models is that not all linear combinations
of responses are influenced by all predictors. This intuition is formalized
assuming that there exist two matrices Γ and Γ0 such that O = [Γ,Γ0] is
orthogonal and

1. ΓT
0 y|X ∼ ΓT

0 y

2. ΓT y ⊥ ΓT
0 y|X

These conditions induce that span (β) ⊆ span (Γ) and Σ = Σ1 + Σ2 =
PΓΣPΓ + QΓΣQΓ, where P(·) is the orthogonal projector operation on a
space and Q(·) = I − P(·) is the projection on the orthogonal space. These
nicely imply that β = Γη where Γ is r × u and η is u× p.
This modelling approach proves to be effective in a variety of situations,
but suffers from a major drawback. Specifically, it is assumed that this
conjecture is the same for each observation in the sample whilst we may
observe a sample made of different subpopulations. For these reasons Mas-
caretti and Canale (2022) propose a Bayesian nonparametric extension of
envelope models through nonparametric mixture models.

25



Canale

4.1 Nonparametric Mixture of Envelops

Instead of assuming

yi ∼ N(µ+ ΓηXi,ΓΩΓ
T + Γ0,Ω0Γ0),

it is trivial to extend the successful Dirichlet process (DP) (Ferguson, 1973)
and dependent Dirichlet process (DDP) (MacEachern, 2000; Quintana et
al., 2022) mixture framework to envelope models. Specifically assume that
yi has density f and f has the following mixture specification

f (y|X) =
+∞∑
h=1

ωhN
(
y;µh + ΓhηhX,ΓhΩhΓ

T
h + Γ0h,Ω0hΓ

T
0h

)
.

Each mixture component is parametrized by θh =
(µh, ηh,Γh,Γ0h,Ωh,Ω0h). Mascaretti and Canale (2022) adopt a modifica-
tion of the prior proposed by Khare et al. (2017) as base measure for θh
and standard stick-breaking prior for the sequence of weights.
In a brief simulation study the authors show a consistent estimation of
different groups and related parameters. See Mascaretti and Canale (2022)
for details.

5 Discusssion

Dimensionality reduction techniques in modern statistics are of paramount
practical importance. While in this paper I discussed how this idea turns
out to be successful in three different settings, many open problems de-
serve further methodological improvements or theoretical investigations.
I conclude this paper with a short discussion on the importance of hav-
ing data-driven criteria to choose the size of the latent space, limiting the
attention to the three cases discussed here.
The factor model presented in Section 2 exploits a shrinkage prior, thus
leading to a coherent Bayesian selection of the latent dimension k. The
same does not hold for the two constructions discussed in Sections 3-4.
The assumption d ≪ p in the latent factor model for Bayesian clustering
of Section 3 is crucial in solving the curse of dimensionality. Chandra et al.
(2022) consider d fixed. A conservative choice for d is sufficient to solve the
theoretical pitfall of Bayesian model-based clustering but the model could
be improved by studying a data-driven method to choose d. Similarly, in
the Bayesian mixture of envelope models of Section 4, the dimension u is
fixed consistently with the frequentist literature that either predetermine
or select it by means of AIC or BIC scores. Such procedures clearly hinder
uncertainty quantification and a fully Bayesian method to choose u, is
currently under investigation.
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Abstract: In this paper we show how copulas can be applied to construct stress
tests. In particular we study three different types of stress senarios of increas-
ing complexities. The use of copulas allows for easy quantification of stress
levels by setting extreme levels for the copula values of the stressor institu-
tions/instruments. We utilize the class of multivariate vine copulas, which are
able to allow for symmetric and asymmetric (tail) behavior of different pairs of
variables in a single model. We show that applying the D-vine regression ap-
proach of Kraus and Czado (2017) allows for a non simulation based assessment
in one scenario type, while simulation is needed for the other two scenario types.

Keywords: Dependence; Vine Copula; Stress testing.

1 Introduction

Stress tests are commonly applied in finance. For a survey and recent devel-
opments see Pliszka (2021). They are designed to determine the ability of a
financial instrument or institution to deal with economic crisis situations.
This is often facilitated by building statistical models in which appropri-
ate crisis senarios can be analyzed. For this we denote by X1, . . . , Xd the
institutions to be stressed and S1, . . . , Sm the instruments/institutions to
be used as stressor. We will consider the following situations:

� Senario 1: Effect of multiple stressors on a single institution

Xj |S1 = s1, . . . Sm = sm for j = 1, . . . d

� Senario 2: Effect of single stressor on a set of institutions

(X1, . . . , Xd)|Sk = sk for k = 1, . . .m

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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� Senario 3: Effect of multiple stressors on a set of institutions

(X1, . . . Xd)|S1 = s1, . . . Sm = sm for j = 1, . . . d, k = 1, . . .m

The different scenarios are illustrated in Figure 1.
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m

Institution X
j

Institution X
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Institution X
d
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j

Institution X
1

Institution X
d

Stressor S
1
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FIGURE 1. Stress test scenarios studied (top: Senario 1, middle: Senario 2,
bottom: Senario 3)

For the analysis of these scenarios we need to choose a multivariate sta-
tistical model to model the dependence among the components. It should
allow for estimation and simulation. Further we need a metric on which
to quantify the stress effects and a choice of an appropriate level for the
stressor(s).
To model the dependence we follow in general a copula based approach
(Sklar, 1959) and in particular a vine copula based approach. The class
of multivariate vine copulas is much more flexible than the class of ellip-
tical copulas such as the Gaussian or Student t copulas or the class of
Archimedean copulas. It can accommodate in one model symmetry and
asymmetry and dependence in the extremes measured by tail dependence.
Multivariate vine copulas are copulas built out of bivariate copulas called
pair copulas. A pair copula construction (PCC) is possible through condi-
tioning. Joe (1996) gave a first example. In particular it allows for separate
specification of the marginal distributions and a set of unconditional and
conditional pair copula families and their parameters. Many PCC’s are fea-
sible. Bedford and Cooke (2002) introduced a graphical structure of linked
trees, called the vine tree structure, to organize them. Gaussian vines were
analyzed in Kurowicka and Cooke (2006), while maximum likelihood and
sequential estimation for Non Gaussian ones started with aasczado.
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More precisely, the joint vine density in d dimensions is the product of
marginal densities together with a product of

(
d
2

)
pair copulas identified

by the vine tree structure. Here the vine tree structure consists of d trees,
where the nodes in the next tree are specified by the edges in the tree
before. Edges are allowed when the edges in the previous tree are linked by
a single node of that tree (proximity condition). The first tree has nodes 1
to d. The arguments of the pair copulas can involve conditional distribution
functions, which can be determined recursively using only the pair copulas
identified by the vine tree structure. A greedy sequential algorithm to select
the vine tree structure, its associated pair copula families and parameters
was developed by Dißmann et al. (2013). The most general class are called
regular vines (R-vines), while if the all trees in the vine tree sequence
are path trees we speak of D-vines. The associated vine tree structure is
completely determined by the order of nodes in the first path tree. The
class of C-vines have star form for all trees and are determined by the
specification of the centers of all star trees.
A step by step introduction to vine copulas can be found in Czado (2019)
and more general results in Joe (2014). See also vine-copula.org and
Czado and Nagler (2022) for software packages and recent developments.

2 Vine copula based modeling

To facilitate a vine copula based inference we work with three scales: the
original scale, the copula scale achieved by applying the marginal distribu-
tion functions to each component and normalized margin scale, where the
copula data is transformed for each component to achieve standard normal
margins. The resulting copula data has then the marginal effects removed.
The normalized margin scale can be used to construct pairwise contour
plots. If the shape is different than an elliptical shape then a Gaussian pair
copula is not warranted.
Estimation is done in a two step approach. First the margins are estimated
and then the estimated marginal distribution function is used to form the
(pseudo) copula data. The copula data is then used in a second step to
select and estimate the vine copula structure (Dißmann et al., 2013). For
this way of proceeding we need at least i.i.d. data samples.
For multivariate time series data we need therefore a filtering step to re-
move the serial dependence. In particular appropriate univariate time series
models to each component of the time series are fitted and used to form
standardized residuals, which are then approximately i.i.d. The fitted in-
novation distribution function is then used to transform the standardized
residuals to the copula scale. This copula data is then ultilized to assess
the dependence among the components. This filtering step is illustrated in
Figure 2.
For some of the stress scenarios we propose a simulation based approach

31

vine-copula.org


Czado

Time
Series 1

Stand.
Resid 1

ARMA-GARCH

Time
Series 2

Stand.
Resid 2

ARMA-GARCH

Time
Series 3

Stand.
Resid 3

ARMA-GARCH

Copula
Data 1

PIT

Copula
Data 2

PIT

Copula
Data 3

PIT

Vine Copula
Model

FIGURE 2. Filtering to remove serial dependence for multivariate time series

based on fitted vine copulas. For this we need vine simulation algorithms
as discussed for example in Chapter 6 of Czado (2019).

3 Vine based stress testing in Senario 1

In this senario we assume that we have time series log returns (st1, . . . , stm)
for m stressors St1, . . . , Stm at time t = 1, . . . , T available. The serial de-
pendence of each components is removed by forming standardized resid-
uals (rSt1, . . . , r

S
tm). The standardized residual values rStk are an approxi-

mate i.i.d sample for the random variable RS
k with distribution given by

the innovation distribution FS
k for k = 1, . . . ,m. This gives rise to cor-

responding random copula variable US
k = FS

k (RS
k ). To identify a stress

level for the k th stressor we set the copula variable US
k to a high value

such as US
k = uS

k = .95 for k = 1, . . .m. Similarly we define the ran-
dom standardized variable Vj = Gj(Rj), where Gj is the innovation dis-
tribution for Xtj , t = 1, . . . , T representing the log returns of the insti-
tution to be stressed. To see the effect of the stress levels uS

k = .95 for
k = 1, . . .m for the stressors on the jth institution we need the conditional
distribution of Vj given (US

1 = .95, . . . , US
m = .95). This conditional distri-

bution is modeled by the D-vine regression model of Kraus and Czado
(2017). Using this approach the conditional distribution function of Vj

given (US
1 = .95, . . . , US

m = .95) and its associated conditional quantile
function is analytically available without the need of integration and can
be simply evaluated. In Kraus and Czado (2017) the joint distribution of
(Vj , U

S
1 , . . . , U

S
m) is modeled as a D-vine copula, where Vj is the first node

and the order of the variables US
1 , . . . , U

S
m are chosen sequentially in a for-

ward manner improving the conditional copula likelihood until adding a
further copula stressor US

k does not increase the conditional log likelihood.
This approach was applied to 38 senior CDS spreads of 18 banks and 20
(re)-insurers using data from Jan. 4 until Oct. 25, 2011 in Kraus and Czado
(2017). Here eight systemic EU banks served as stressor institutions and
the effect on each of the remaining institutions were considered separately.
On average only 3.7 of the eight stressor banks were selected and Deutsche
Bank was selected most often. Most of the selected pair copulas were Stu-
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dent t copulas with high association and low degree of freedom. For more
details on the results consult Kraus and Czado (2017).

4 Vine based stress testing in Senario 2

In this scenario the impact of a large copula data value of single stressor
S on the copula values of institutions (X1, . . . Xd) is jointly studied. For
C-vines the joint distribution given a single conditioning value is analyti-
cally available, but marginal quantiles cannot easily computed. Therefore
simulation in contrast to the situation of Scenario 1 is needed.
So for copula stressor variable US set uS = .95 and sample from

(V1, . . . , Vd)|US = uS .

Here Vj is the copula variable corresponding to the j th institution to
be stressed. Brechmann et al. (2013) develop the necessary conditional
sampling algorithms and use the same data as in Kraus and Czado (2017).
In particular the sampling is repeated R = 10000 times for each company
giving ṽℓ,j|uS , j ∈ {1, ..., 38} \ uS , ℓ = 1, ..., R. These simulated values are
then used to assess the impact of the stressor on a group of institutions.
Here the effect on groups formed by sectors (banks/insurances) and regions
(EU, US and Asia/Pacific) are investigated. Their major results were

� The stress effect of a member on the other members of the sector
highest compared to other sectors in US and EU.

� The stress effect of US banks on US insurance, EU banks and EU
insurance is similar.

� The stress effect of EU banks on EU insurances is higher compared
to the one on US companies.

� Stress of EU insurance on EU banks higher than on US companies

� Stress of US insurance on US banks and EU companies similar.

More details can be found in Brechmann et al. (2013).

5 Vine based stress testing in Scenario 3

This is the most complex scenario. In this case vine copula models can still
be used, however only certain conditional distribution of the chosen vine
copula are explicitly available without the need of integration. Therefore
Markov Chain Monte Carlo (MCMC) are needed to facilitate the necessary
integration. Here also the full class of R-vines can used. This approach has
been applied in Kähm (2014) to the same data set as discussed before and
his simulation results showed good performance in 10 dimensions.
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6 Conclusions and outlook

We have shown how vine copula based modelling is used to evaluate three
different types of stress scenarios. This approach allows for simple quantifi-
cation of the stress level using the copula scale. Especially the Scenario 1
can is computationally cheap since it does not require simulation and thus
can be applied involving large numbers of stressors.
Recently vine copulas have also been applied to construct stress tests for
portfolios in Sommer (2022). Here Value at risk (VaR) and expected short-
fall (EF) are used as risk measures for the portfolio. It utilizes also the
approach of Kraus and Czado (2017), but assesses the effect of a single
stressor on the VaR or EF of the portfolio using one day ahead forecasts.
In this future we like to conduct larger case studies and to develop fast
software tools to allow for larger number of stressors and institutions to be
stressed.
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Abstract: There is long-standing and widespread interest in understanding if
there is any limit to human lifetimes. Apart from its intrinsic interest, changes
in survival in old age have implications for the sustainability of social security
systems. Recent analyses of data on the oldest human lifespans have led to com-
peting claims about survival and to some controversy, due in part to inappropriate
use of statistical methods. One central question is whether the endpoint of the
underlying lifetime distribution is finite. This talk will discuss the particularities
associated with such data, outline correct ways of handling them and present
suitable models and methods for their analysis. We illustrate the ideas through
analysis of data on semi-supercentenarian lifetimes, which suggests that any up-
per limit to human lifetimes lies well beyond the highest lifetime yet reliably
recorded, with lower limits to 95% confidence intervals around 130 years, and
maximum likelihood estimates well above 130 years.

Keywords: Human lifespan; sampling frame; statistics of extremes; survival data

1 Introduction

The existence or not of an upper limit to human lifetimes is of perennial
public and scientific interest. Most people hope for a long and happy life,
capped by an old age crowned with wisdom and free of worries. The roles
of diet, exercise and social contact in achieving these are regularly trum-
peted in the media, and societies worldwide are adapting to the presence
of a larger active elderly population. Medical and social advances, as well
as general population growth, have increased the numbers of centenarians
(people aged over 100 years), of semi-supercentenarians (who die between
the ages of 105 and 110 years) and supercentenarians (who live to at least
110 years). The oldest person for whom reliable documentation is available,
the Frenchwoman Jeanne Calment, died in 1997 aged 122 years and 164

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).

36



Davison

days, and despite the increase in the number of well-documented centenar-
ians she remains the only person who can plausibly be said to have lived
past her 120th birthday. For some this suggests that there must be a hard
upper bound on human lifetimes, and the general increase in health simply
means that more and more people will live well closer and closer to this
limit, but that it cannot be breached without a major biological break-
through. Others attribute this event to the play of chance and are willing
to invest large sums in attempting to ‘stop ageing’. For example, the Palo
Alto Longevity Prize aims to reward innovations that could restore the
body’s homeostatic capacity and thus extend human lifetimes.
The talk summarised by this paper discusses the statistical evidence on this
topic, which is plagued by three main issues: data, models, and extrapola-
tion. It is based on work performed jointly with Léo Belzile (HECMontréal)
Jutta Gampe (Max Planck Institute for Demographic Research, Rostock),
Holger Rootzén and Dmitrii Zholud (Chalmers University of Technology
and University of Gothenburg), detailed in Belzile et al. (2021, 2022).

2 Data

Much of the data available on individuals dying at extreme ages is essen-
tially anecdotal. Sites such as that of the Gerontology Research Group
(grg.org) or gerontology.fandom.com/ contain information about many
individuals, but there appears to be no well-defined sampling scheme for
finding these persons, and this makes statistical analysis impossible. More-
over the kudos given to the very old can give incentives to exaggerate
longevity, so it is important to check ages carefully, especially as any ex-
trapolation towards a possible upper bound is likely to depend strongly on
the few largest lifetimes. Those who live to great ages were by definition
born long ago, and validating their life-course (using official birth, bap-
tismal, marriage and similar records) can be difficult and time-consuming
even in countries with long-standing and reliable systems of public records.
Fortunately a systematic effort to assemble and validate data from sev-
eral countries has led to the creation of the International Database on
Longevity (IDL, www.supercentenarians.org), which has been set up by
demographers of various countries to help shed light on living to great age.
The data are regularly updated (so some care is needed in making com-
parisons between analyses at different times) and freely available. At the
time of writing the IDL contains 1161 supercentenarians and around 18,000
semi-supercentenarians; the former all systematically validated using na-
tional records, and the latter validated by sampling. An important part of
the database is the meta-data, which explains the sampling schemes used;
these have important implications for subsequent inferences.
The sampling scheme used for the IDL is to retain all the individuals dying
above a given age threshold (110 years for supercentenarians) between two
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given dates. This implies that the sample is truncated, because individu-
als who do not reach the threshold or who do, but die outside the given
dates, do not appear in the database. A further complication is that the
increasing numbers of the very old means that the rate of entry into the
sample is rapidly changing over time. The effects of truncation and of the
increased population size have been ignored by some authors, leading to
biased estimation of the lifetime distribution.
Other large databases are also available, though they are typically unvali-
dated and may have slightly different sampling schemes.

3 Modelling and extrapolation

The goal of analysis is inference on the putative upper limit to the lifetime
distribution. We call this limit the ‘human lifespan’ and refer to individual
life-lengths as ‘lifetimes’. The fact that an infinite lifespan may be compat-
ible with the finiteness of every individual lifetime is not obvious to those
with a shaky grasp of probability theory, and some care is needed when
presenting results.
The distribution of human lifetimes is of long-standing actuarial interest
and a variety of models have been proposed for the hazard function, also
known in the present context as the ‘force of mortality’. The Gompertz–
Makeham hazard at age t is of the form λ0+λ1 exp(t/σ), where λ0, λ1σ > 0,
and can be interpreted as stemming from a constant hazard of accidents
at any age plus an exponential hazard due to aging. Although this hazard
function increases without limit, the corresponding lifespan is infinite; again
a common misconception is that an unlimited hazard must lead to a finite
lifespan. Such a distribution cannot resolve whether the lifespan is finite.
A more satisfactory approach is the use of statistical extreme-value theory
and in particular the generalized Pareto distribution, which can be regarded
as the canonical model for exceedances over a high threshold u, say. This
distribution has hazard function max(σ + ξt, 0) for t > 0, positive scale
parameter σ, and real shape parameter ξ. If the latter is negative, then the
lifespan ι equals u−σ/ξ, and if ξ ≥ 0, then ι is infinite. There are subtleties
in the application of this model, which provides an asymptotic approximate
to the exceedance distribution, valid as u → ι, and the stability of its fit
should be carefully assessed. Fortunately this domain of statistics is now
well-developed and numerous techniques are available for data analysis that
takes into account truncation and censoring if necessary.

4 Results

Figure 1 summarises the evidence for the human lifespan based on suitable
fits of the generalized Pareto distribution to various datasets. With the
exception of French men, whose hazard of dying is significantly higher than
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FIGURE 1. Profile log likelihoods for the human lifespan based on various
datasets using the generalized Pareto model with thresholds at 105, 108 and
110 years. The numbers of exceedances of the thresholds are given at the bottom
right of each panel. Adapted from Belzile et al. (2022).

that of their female counterparts, there seem to be no national or gender
differences (though women outnumber mean 10:1 at great age). The general
summary in the top left panel shows that the maximum likelihood estimate
for the lifespan is around 135 for threshold 105 years with approximate
95% confidence interval (130, 140) , but as the threshold is increased the
maximum likelihood estimate increases; the upper limit to the confidence
interval is infinte for higher thresholds. The simplest model above 108 years
is exponential and corresponds to a probability of dying in any given year
of 0.5, conditional on survival to that point. Similar patterns appear for
most of the other datasets, and we conclude that the statistical evidence
suggests that even if the human lifespan is not infinite, it is unlikely to be
approached in the near future without a major medical advance — under
this model, even if a million people reached age 110, we would expect just
one to reach the age of 130.
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Abstract: High blood pressure is a well known risk factor for cardio-vascular
events, stroke and dementia. Several studies have also suggested that high vari-
ability of blood pressure could be a risk factor for cerebro-vascular events in-
dependent from the mean blood pressure. Besides, the medical literature is full
of hypotheses regarding a possible link between the variability of risk factors or
markers and the onset of clinical events. For instance, the emotional instability
could be associated with the risk of psychiatric events while the variability of
glycemia could impact the prognosis of diabetes patients.
However, studying the relationship between the variability of a factor and an
event risk raises methodological challenges, especially due to the fact that the
measure of the variability requires repeated measures over a period of time. Joint
modelling of the repeated measures of the marker over time and the event risk is
recommended to avoid biases due either to sample selection or sample attrition.
In this presentation, we will discuss both joint models including a location-scale
mixed submodel and bivariate joint models considering repeated measures of the
empirical variance and the mean of blood pressure as two correlated markers.

Keywords: Joint models, Longitudinal data, Risk prediction, Variance mod-
elling.

1 Introduction

Stroke is the leading cause of acquired physical disability in adults and the
second leading cause of death. It is thus important to identify risk factors
for stroke in order to implement prevention programs. High blood pressure
is a well known risk factors for stroke and, more recently, a large variability

This paper was published as a part of the proceedings of the 36th Inter-
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of blood pressure has also been found associated with an increased risk of
stroke (Shimbo et al, 2012) and dementia (Alpérovitch et al, 2014) indepen-
dently of the mean level of blood pressure. However, these studies are based
on standard Cox models including the standard deviation of blood pressure
as an explanatory variable and thus are exposed to potentially important
shortcomings (De Courson et al, 2021). When the standard deviation is
estimated using all the measures collected during all the follow-up, biases
may arise because measurements after the current time (and in some anal-
yses after the event time) are used to predict the event. When the standard
deviation is computed on an initial period of time excluding subjects who
had the event during this period, a selection bias and a loss of power are
possible. In addition, the measurement error and the unequal number of
measures for each individual are not handled with these approaches.
Rigorous statistical approaches would therefore be useful for studying if
the variability over time of exposures or biomarkers is associated with the
onset of clinical events. For instance, clinicians are interested in the predic-
tive ability of emotional instability for psychiatric events or in the impact
the variability of glycemia on the prognosis of diabetes patients. As many
clinical and epidemiological studies include frequent repeated measures of
exposure or biomakers, often using IoT tools, the data required for such
fine analyses are now available.
Joint modelling of longitudinal data and time to events is a key approach
to study time-varying risk factors as determinant of health events and to
develop dynamic individual prediction models for the events based on re-
peated measures of markers. They combine a mixed model for the repeated
measures of the time-varying variable and a time-to-event model. Functions
of the random effects from the mixed model are included as explanatory
variables in the time-to-event model to account for the association between
the two outcomes. Joint models account for the measurement error of the
risk factor, avoid imputation of the last observed risk factor value for all the
event times, and are suitable for endogenous variables (variables that can
be impacted by the onset of the event at an earlier time such as biological
markers). Although most joint models assume that the event risk depends
only on the mean individual trajectory of the marker (through the current
value or the current slope for instance), Barrett et al (2019) recently pro-
posed a joint model allowing the event risk to depend on the intra-subject
variability of the marker.
In this work, we extend the Barrett et al’s location-scale joint model to
allow more flexible dependence structure between the event and the mark-
ers and handle competing risks. We used this new model to investigate the
relation between blood pressure variability and the risk of stroke recurrence
accounting for the competing risk of death from another cause in a large
international clinical trial. Then this approach is applied to a sample of pa-
tients hospitalized in an intensive care unit after subarachnoid hemorrhage
(SAH) to predict the risk of vasospasm (one of the main complications
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of SAH) from intensive blood pressure measures. To explore the change
over time in the variability of blood pressure and its impact on the risk of
vasospasm, we consider also a bivariate joint model considering repeated
measures of the individual mean of the blood pressure and of its individ-
ual standard-deviation computed on 6-hours windows as two longitudinal
markers.

2 Location-scale joint models

2.1 Model formulation

Let us denote Yi = (Yi1, ..., Yij , ..., Yini
) the vector of repeated measures of

the blood pressure for subject i (i = 1, ..., N) at times (tij , j = 1, ...ni).
Assuming two two competing events, the observed event time, denoted Ti,
is the minimum between the time of onset of the competing events and the
time of censoring while the failure indicator is δi ∈ {0, 1, 2} with δi = 0
in case of censoring and δi = k ∈ {1, 2} if event k is observed. The model
can include vectors of possibly time-dependent covariates Xij and Zij in
addition to tij .
The location-scale joint model for competing risks is a shared random-
effects joint model including a subject-specific random effect for the residual
variance of the blood pressure. The submodel for the longitudinal marker
is defined by :

Yij = Yi(tij) = Ỹi(tij) + ϵij = XT

ijβ + ZT

ijbi + ϵij (1)

with
bi ∼ N (0,Σ), ϵij ∼ N (0, σ2

i ),

log(σi) ∼ N (µσ, τ
2
σ) and bi ⊥ σi.

The cause-specific models for the competing events are defined for the event
k ∈ {1, 2} by :

λik(t) = λ0k(t) exp (W
T

i γk + α1kỹi(t) + α2kỹ
′
i(t) + ασkσi) , (2)

with λ0k(t) the baseline risk functions and Wi a vector of time-fixed co-
variates, while ỹi(t) and ỹ′i(t) are the expected value and the derivative
of the individual blood pressure trajectory at time t. We consider either
standard parametric baseline risk function (Weibull for instance) or flexible
functions defined using B-splines.

2.2 Estimation method

The model is estimated by maximising the marginal likelihood with numeri-
cal integration over the random effects. Taking advantage of the conditional
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independence between the marker and the events given the random effects,
the individual contribution to the likelihood may be written as :

Li(Yi, Ti, δi) =

∫
f(Yi|bi, σi) exp(−Λ1(Ti|bi, σi)− Λ2(Ti|bi, σi))

2∏
k=1

λk(Ti|bi, σi)
1(δi=k)f(bi)f(σi)dbidσi (3)

where Λk(t|bi, σi) is the conditional cumulative risk for event k and
f(Yi|bi, σi) is the product of ni conditional univariate Gaussian distribu-
tions. Delayed entry can be handled by dividing the likelihood by the prob-
ability to be free of event at entry in the cohort.
The integral over the random effects are computed by a Quasi Monte
Carlo approach and the cumulative risks function are approximated by
the Gauss-Konrod quadrature with 15 points. The optimisation algorithm
is the Marquardt-Levenberg algorithm, a robust variant of the Newton-
Raphson algorithm, with stringent convergence criteria. The estimation
algorithm is implemented in a R-package that will be made available on
GitHub.

3 Application to blood pressure and cerebro-vascular
events

3.1 Blood pressure and recurrence of stroke

This first analysis aims at studying the impact of intra-individual vari-
ability of blood pressure on the risk of stroke recurrence and death from
other causes in a large sample of subjects with a history of stroke. Data
comes from the randomized, double-blind, international controlled trial
PROGRESS (Perindopril Protection against Stroke Study). We analysed
data from the 3032 patients included in the placebo arm. They were fol-
lowed for at least 4 years with 5 visits in the first year and 2 annual visits
for the next 4.5 years with blood pressure measures collected at each visit.
During the follow-up, 406 strokes and 213 deaths without strokes were
observed.
We estimated a joint model defined by (1) and (2) adjusting each submodel
on age at baseline, sex and ethnicity (Asian or Non-Asian). The baseline
risk function and the change over time of the blood pressure were defined
using a splines basis.
Estimates supported the hypothesis of an heterogeneous intra-subject vari-
ability (τ̂2 = 0.36, SE(τ̂2) = 0.008) significantly associated with the risk
of death (α̂σ2 = 0.071, SE(α̂σ2) = 0.027) but not with the risk of re-
current stroke (α̂σ1 = −0.023, SE(α̂σ1) = 0.023). Conversely, the cur-
rent value of blood pressure was not associated with the risk of death
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(α̂12 = 0.006, SE(α̂12) = 0.006) but high current value of blood pressure
significantly increased the risk of recurrent stroke (α̂11 = 0.024, SE(α̂11) =
0.004). The slope of the blood-pressure trajectory was not associated with
the events and was deleted from the model.

3.2 Blood pressure and risk of vasospasm after SAH in ICU

The objective of this analysis was to evaluate the association of blood
pressure variability with the risk of vasospasm and death after a SAH. The
database included 201 patients hospitalized in the neurologic ICU of the
Bordeaux University Hospital for the management of a SAH. Data were
collected from June 2018 to June 2019 inclusive. For each patient, blood
pressure was measured every hour until discharge or for a maximum of 14
days after entry into the ICU; 46 vasospasms and 10 deaths were observed
over 14 days. The longitudinal sub model and the time-to-event submodel
were adjusted for age, sex, elapsed time between HSA and entry in ICU,
weight, a severity score and history of hypertension before inclusion.
Although the outcomes, the time range and the patients status were com-
pletely different, we found qualitatively similar results. A high current
value of blood pressure was associated with an increased risk of vasospasm
(α̂11 = 0.042, SE(α̂11) = 0.019) while a large intrasubject variability in-
creased the risk of death(α̂σ1 = 0.66, SE(α̂σ1) = 0.21).
A limit of the above analyses was that the intra-subject variance of blood
pressure was assumed to be constant over time while clinicians hypothesize
that changes in blood pressure variability could be predictive of vasospasm
or death in a near future. As the location-scale joint model does not al-
low flexible modeling of the time trend of the intra-subject variance, we
performed an exploratory analysis of this hypothesis using a standard joint
model for two longitudinal markers and competing events. We described the
change over time of the empirical individual mean and empirical individual
standard-deviation of blood pressure computed on non-overlapping 6-hours
time intervals using a bivariate mixed model with flexible time-trend and
tested in a joint model if the risk of vasospasm and death was associated
with the current mean and standard-deviation values. The model was esti-
mated with the R-package JMBayes2. In the presentation, we will contrast
results of the two approaches.

4 Conclusion

The proposed location-scale joint models makes possible to study the vari-
ability over time of any exposure or biomarkers as a risk factor for clinical
events. This model includes a flexible modelling of the time trend for both
the marker and the event risk as well as the dependence structure between
the outcomes. A free R-package will be made available soon. Future work
includes flexible modeling of time-dependent intra-subject variance.
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1 Adjusted estimating functions

1.1 Maximum likelihood estimation

Let ℓ(θ) be the log-likelihood about a parameter vector θ with θ ∈ ℜv. If
the model is appropriate, then under fairly general regularity conditions,

the maximum likelihood (ML) estimator θ̂ = argmax ℓ(θ) has θ̂
p→ θ, and

{i(θ)}1/2(θ̂ − θ)
d→ N(0, Iv), where Iv is the v × v identity matrix, and

i(θ) = Varθ(∇ℓ(θ)) is the expected information matrix. Hence, the ML
estimator is consistent and asymptotically has zero mean and median bias,
and attains the Cramér-Rao lower bound i(θ) for the variance of unbiased
estimators. More refined results can be obtained using stochastic Taylor
expansions, and include that the mean bias is Eθ(θ̂ − θ) = O(n−1), where
n is a measure of information about θ, often equal to the sample size, the
components θ̂ have median bias P (θ̂j ≤ θj) = 1/2 + O(N−1/2), and θ̂ has

variance Var(θ̂) = i(θ) +O(n−1).
These asymptotically optimal properties have rendered ML as one of the
most popular estimation methods in statistical modelling. Nevertheless, for
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finite samples, there can be substantial deviations from the expected be-
haviour. There have been numerous attempts to improve the finite-sample
properties of the ML estimator. Prominent approaches in this direction
define a new estimator θ̄ to be such that S(θ̄) + A(θ̄) = 0v, for an adjust-
ment A(θ) = Op(1) as n → ∞, where S(θ) = ∇ℓ(θ) and 0v is a v-vector
of zeros. The key idea is then to derive the form of A(θ) that results in
estimators with asymptotically smaller mean (Firth, 1993; Kosmidis and
Lunardon, 2020) or median bias (Kenne Pagui et al., 2017), in the sense

that Eθ(θ̄ − θ) = o(n−1) and P (θ̂j ≤ θj) = 1/2 +O(N−3/2), respectively.

1.2 Estimation using a quasi-Newton iteration

A general iterative procedure for computing the estimates θ̄ is a general-
ization of the quasi-Newton iteration in Kosmidis and Firth (2010), where
the value of θ̄ at the (m− 1)th iteration is updated to

θ̄(m) := θ̄(m−1) + {j(θ̄(m−1))}−1S(θ(m−1)) + {j(θ̄(m−1))}−1A(θ(m−1)) .

If the iteration converges, it must hold that S(θ̄(∞))+A(θ̄(∞)) = 0v, hence
the iteration has the correct stationary point. More specialized algorithms
can be developed for particular model classes and adjustment functions;
see for example Kosmidis and Firth (2021) for an algorithm that proceeds
by repeated maximum likelihood fits on adjusted versions of the binomial
counts and totals when A(θ) is the gradient of the Jeffreys invariant prior.

1.3 Inference

The attractiveness of additively adjusted likelihood equations approaches is
that θ̄ has the same asymptotic distribution as the ML estimator generally
does, and, as a result, is asymptotically efficient. The distribution of θ̄ for
finite samples can be approximated by N(θ, {i(θ)}−1). This result is due to
the adjustment A(θ) being of order Op(1) as n → ∞, and hence, dominated
by ∇ℓ(θ), which is Op(n

1/2), as information increases. The implication is
that standard errors for θ̄ can be computed exactly as for the ML estimator,
using the square roots of the diagonal elements of the inverse of i(θ) or
j(θ) = −∇∇Tℓ(θ) at the estimates. Furthermore, first-order inferences,
like standard Wald tests and Wald-type confidence intervals and regions
are constructed in a plugin fashion, by replacing the ML estimates with
the value of θ̄ in the usual procedures in standard software.

2 Mean bias reduction

Firth (1993) shows that an estimator θ∗ with mean bias Eθ(θ
∗ − θ) =

O(n−2), which is asymptotically smaller than the bias of θ̂, results for

At(θ) =
1

2
trace

[
i(θ)−1 {Pt(θ) +Qt(θ)}

]
(t = 1, . . . , v) , (1)
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where Pt(θ) = Eθ(S(θ)S(θ)
TSt(θ)) and Qt(θ) = −Eθ(j(θ)St(θ)). Mean

bias reduction (mBR) has been found to result in estimates away from the
boundary of the parameter space in a range of categorical data models. See,
for example, Kosmidis and Firth (2009, Section 6) for row-column associ-
ation models; Bull et al. (2002) and Kosmidis et al. (2020, Section 6) for
baseline category models; and Kosmidis (2014) for cumulative link models.
If θ is the canonical parameter of a full exponential family, like in binomial
and multinomial logistic regression, then j(θ) = i(θ) and j(θ) does not
depend on the stochastic part of the model. Hence, Qt(θ) = 0v×v, where
0v×v is a v × v matrix of zeros, and some algebra gives that the solution
of the mean bias-reducing adjusted score equations is equivalent to the
maximization of the penalized log-likelihood

ℓ(θ) +
1

2
log det{i(θ)} , (2)

where the penalty is the logarithm of the Jeffreys invariant prior. Recent
work by Kosmidis and Firth (2021) considers the impact of penalized like-
lihoods like (2) in the estimation of many well-used binomial-response gen-
eralized linear models, including logistic, probit, complementary log-log,
and cauchit regression. Among other results, Kosmidis and Firth (2021)
prove that maximizing the likelihood after penalizing it by arbitrary pos-
itive powers of the Jeffreys prior always results in finite estimates, and
derive the shrinkage directions implied by the penalty.
Kosmidis and Lunardon (2020) have proposed an alternative and more gen-
eral bias reduction approach that not only applies to general M -estimation
problems (where S(θ) =

∑k
i=1 S

i(θ) is a general estimating function formed
by independent contributions S1(θ), . . . , Sk(θ)), but also does not require
computing expectations of products of log-likelihood derivatives (like Pt(θ),
Qt(θ), and i(θ)) under the model, which can be a daunting task even
for simple models. In particular, it can be shown that a reduced-bias M -
estimator (RBM -estimator) θ∗∗ with mean bias Eθ(θ

∗∗ − θ) = O(n−3/2)
results if

At(θ) = −trace
{
j(θ)−1dt(θ)

}
− 1

2
trace

[
j(θ)−1e(θ)

{
j(θ)−1

}T
ut(θ)

]
, (3)

where ut(θ) =
∑k

i=1 ∇∇TSi
t(θ), j(θ) has rth row −

∑k
i=1 ∇Si

r(θ), [e(θ)]rt =∑k
i=1 S

i
r(θ)S

i
t(θ), and [ur(θ)]st =

∑k
i=1{∂Si

r(θ)/∂θs}Si
t(θ).

The bias-reduction method defined by (3) is a major generalization over
past bias-reduction methods whose applicability is limited to either cases
where the log-likelihood function of a correctly-specified model is required
(e.g., Firth, 1993), or samples from a correctly-specified model can be sim-
ulated (e.g., Gourieroux, 1993 for indirect inference, and and Kuk, 1995
for iterative bootstrap). Also, importantly, this generalization comes with
less implementation requirements because (3) requires only the estimating
function contributions and the first two derivatives of those.

48



Kosmidis

RBM -estimators can directly be computed and used in settings that involve
realizations of k independent random vectors with dependent components.
Examples of such settings are the generalized estimating equations in Liang
and Zeger (1986) for estimating marginal regression parameters for cor-
related responses, and composite likelihood methods Varin et al. (2011).
What makes RBM estimation appealing is the fact that if S(θ) is the gra-
dient of an objective function ℓ(θ), then S(θ)+A(θ) is formally the gradient
of ℓ(θ)−trace

{
(j(θ))−1e(θ)

}
/2, and the RBM estimates can be computed

by maximizing the latter expression. Hence, unlike other approaches, RBM
estimation always has a penalized likelihood interpretation.

3 Median bias reduction

Kenne Pagui et al. (2017) show that an estimator θ† with P (θ†t ≤ θt) =
1/2 + O(N−3/2), which is asymptotically closer to 1/2 than the median

bias of θ̂, results for

A(θ) =
1

2
trace

[
i(θ)−1 {Pt(θ) +Qt(θ)}

]
− i(θ)F (θ) . (4)

In the above expression, Ft(θ) = [i(θ)−1]Tt F̃t(θ), with

F̃tu(θ) = trace

[
ĩu(θ)

{
1

3
Pt(θ) +

1

2
Qt(θ)

}]
(t = 1, . . . , g) ,

and ĩu(θ) = [i(θ)−1]u[i(θ)
−1]Tu/[i(θ)

−1]uu (u = 1, . . . , v), where Au and
Atu denote the uth column and (t, u)th element of a matrix A. When
j(θ) = i(θ), expression (4) simplifies in a similar manner as expres-
sion (1) does. In fact, for one-parameter models (v = 1) that are expo-
nential families in canonical parameterization, it can be shown that me-
dian bias reduction (mdBR) is formally equivalent to the maximization of
ℓ(θ)+ log det{i(θ)}/6 (see, Kenne Pagui et al., 2017, Section 2.1. However,
mdBR has no penalized likelihood interpretation for v > 1.
Furthermore, to date there has been no empirical adjustment like (3) that
delivers mdBR in general M -estimation problems.

4 Bias reduction and parameter transformation

The ML estimator is equivariant in the sense that the ML estimator of g(θ)

is exactly g(θ̂) for any one-to-one transformation g(·). Hence, there is no
need to maximize the log-likelihood about g(θ) if the ML estimator of θ
has already been computed. In contrast, the mBR and mdBR estimators
are equivariant only for specific transformations g(·).
The mBR estimator is equivariant under linear transformations of the pa-
rameters; the mBR estimator of Cθ for a known matrix C is exactly Cθ∗.
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This is useful in regression problems with categorical covariates where pa-
rameter contrasts are usually of interest. The same equivariance property
holds for the RBM -estimator but not for the mdBR estimator.
The mdBR estimator of (g1(θ1), . . . , gv(θv))

T is (g1(θ
†
1), . . . , gv(θ

†
v))

T for
any set of one-to-one functions g1(·), . . . , gv(·). Hence, and unlike mBR, the
mdBR estimator is equivariant under component-wise transformations.
Di Caterina and Kosmidis (2019) present a simple way to derive the mean
bias of h(θ̄) for any three-times differentiable function h : C → D, with
C ⊂ ℜp andD ⊂ ℜ, when θ̄ is an estimator with o(n−1) bias. The estimator
h(θ̄) of ζ = h(θ) has mean bias

E(h(θ̄)− h(θ)) =
1

2
trace

{
i(θ)−1∇∇Th(θ)

}
+O(n−2) , (5)

where ∇∇Th(θ) is the hessian of h(·) at θ. Note that for linear transfor-
mations, ∇∇Th(θ) = 0v×v, and hence E(h(θ̄) − h(θ)) = O(N−2), which
confirms the earlier discussion that the mBR and RBM estimators be-
ing exactly equivariant for linear transformations of the parameters. The
first term in the right-hand side of (5) can be evaluated at θ̄ and be
used to derive reduced-bias estimators based only on θ̄, i(θ̄) or j(θ̄), and
∇∇Th(θ̄). Obvious such estimators are h(θ̄) − trace

{
i(θ̄)−1∇∇Th(θ̄)

}
/2.

and h(θ̄)− trace
{
j(θ̄)−1∇∇Th(θ̄)

}
/2.

For example, consider the case of estimation of the odds-ratios exp(βj) in
a logistic regression model with linear predictor ηi = xTβ, for a covariate
vector x. Expression (5) gives that the odds-ratio at the mBR estimator has
E(exp(β∗

j )) = exp(βj) [1 + vjj(θ)/2] + O(n−2), where vjj(θ) = [i(θ)−1]jj .

Hence, two estimators of ζj = exp(βj) with O(n−2) bias are

ζ
(1)
j = exp(β∗

j )

[
1− 1

2
vjj(θ

∗)

]
and ζ

(2)
j =

exp(β∗
j )

1 + vjj(θ∗)/2
,

arising from subtracting an estimate of the bias at θ := θ∗ from exp(β∗
j ),

and dividing exp(β∗
j ) by the correction factor 1 + vjj(θ

∗)/2, respectively.

The estimator ζ
(2)
j for the odds-ratio ζj has the advantage of being always

positive, while ζ
(1)
j takes negative values if vjj(θ

∗) > 2. The approximation
exp{vjj(θ)/2} ≈ 1+ vjj(θ)/2 for small vjj(θ) can be used to show that the

mBR estimator ζ
(2)
j closely relates to the reduced-bias estimator exp{β∗

j −
vjj(θ

∗)/2} derived in Lyles et al. (2012).
The discussion in Section 1.3 implies that estimated standard errors for
reduced-bias estimators of transformed parameters can be computed using
the delta method, as for the ML estimator.
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Abstract: Varying-coefficient stochastic differential equations (SDEs) are a use-
ful tool to uncover mechanistic relationships underlying time series. By modelling
the parameters of the process of interest as smooth functions of covariates, they
provide an extension of basic SDEs to capture detailed, non-stationary features
of the data-generating process. In practice, these parameters often vary at mul-
tiple time scales, which we illustrate using dive data collected on beaked whales:
while their posture in the water within a single dive can be described by varying-
coefficient SDEs, different types of dive have different dynamics. In this paper,
we propose state-switching varying-coefficient SDEs as a novel class of statistical
models that accounts for disparate patterns between dives while simultaneously
allowing us to make inference on the underlying behavioural processes that occur
within dives. This enables us to draw a multi-scale picture of the whales’ diving
behaviour.

Keywords: Hidden Markov models; Smoothing splines; Stochastic differential
equations; Temporal resolution; Time series modelling.

1 Introduction

Stochastic differential equations (SDEs) with covariate-dependent coeffi-
cients constitute a popular class of statistical models for time series. In
recent years, they have been applied to model the movement of elephants,
the body condition of seals, and the diving behaviour of whales (Michelot et
al., 2021), to name but a few examples. However, in practice, the relation-
ship between the parameters of the process of interest and covariates can
be subject to state-switching over time (Leos-Barajas et al., 2017; Adam
et al., 2019), which cannot readily be accommodated in the existing ap-
proach. To overcome this problem, we propose a state-switching extension
of varying-coefficient SDEs. The suggested approach is applied to dive data

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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collected on beaked whales (a subset of which was used in Michelot et al.,
2021), where we analyse the dynamics of their postural angles (pitch and
roll) through different dive phases (within-dive scale) and how these vary
across dives (between-dives scale).

2 Methods

2.1 Model formulation and dependence structure

State-switching varying-coefficient SDEs comprise two stochastic processes
that are connected with each other:

� a hidden state process, {Bd}d=1,...,D ∈ {1, . . . , N}, where d is a dive
index, D is the number of dives, and N is the number of states;

� an observed state-dependent process, {Yd,t}d=1,...,D,t=1,...,T , where
the index t denotes the t-th observation within the d-th dive.

The hidden state process is modelled by a discrete-time, N -state Markov
chain with initial distribution δ = (δi), δi = [B1 = i], and transition prob-
ability matrix (t.p.m.) Γ = (γi,j), γi,j = [Bd+1 = j|Bd = i]. While the
observed state-dependent process can be any Wiener process, we consider
the specific case of Brownian motion with t-distributed noise, which is de-
termined by its drift (the average change of the process over an infinitesimal
small time interval) and diffusion (its variability). For each of the two dive

variables, the drift, r
(bd)
d,t , and diffusion, s

(bd)
d,t , are modelled as

r
(bd)
d,t = ζd + f

(bd)
r (xd,t), ζd ∼ N

(
µζ , (σζ)

2
)
;

log
(
s
(bd)
d,t

)
= ξd + f

(bd)
s (xd,t), ξd ∼ N

(
µξ, (σξ)

2
)
,

where xd,t is a covariate and f
(bd)
r and f

(bd)
s are basis-penalty smooths,

f
(bd)
θ (xd,t) =

m∑
k=1

β
(bd)
θ,k ψθ,k(xd,t),

where β
(bd)
θ,k is the state-dependent basis coefficient associated with the k-

th basis function, ψθ,k(xd,t), and m denotes the number of basis functions
considered (Eilers and Marx, 1996). Incorporating other basis functions,
such as individual-specific random effects, is straightforward.

2.2 Likelihood evaluation and model fitting

As the transition density of the model outlined in Section 2.1 is Markovian,
the likelihood of all observations within the d-th dive, yd = (yd,1, . . . , yd,T ),
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being generated by the j-th varying-coefficient SDE is given by

[yd|Bd = j] =
T∏

t=2

[Yd,t = yd,t|yd,t−1, r
(j)
d,t , s

(j)
d,t ], (1)

where j ∈ {1, . . . , N}. The transition density in (1) can be written as

[Yd,t = yd,t|yd,t−1, r
(j)
d,t , s

(j)
d,t ] = f

(
yd,t+1 − yd,t − r

(j)
d,t∆d,t

s
(j)
d,t

√
∆d,t

)
· 1

s
(j)
d,t

√
∆d,t

,

where f is the density of a Student’s t-distribution and 1/(s
(j)
d,t

√
∆d,t) is

the Jacobian of the transformation from Yd,t to the increment Dd,t (Mich-
elot et al., 2021). By exploiting the Markovian dependence structure, the
likelihood of the full model can be evaluated using the forward algorithm,

L(θ|y) = δP(y1)
D∏

d=2

ΓP(yd)1, (2)

where P(yd) = diag([yd|Bd = 1], . . . , [yd|Bd = N ]) and 1 denotes a col-
umn vector of ones (Zucchini et al., 2016). To avoid overfitting, we add a
roughness penalty term to (2) and maximise the penalised log-likelihood

lp(θ|y) = log
(
L(θ|y)

)
−

2∑
i=1

N∑
j=1

λ
(j)
i β

(j)⊤
i Siβ

(j)
i ,

where λ
(j)
i is a smoothing parameter, for the i-th smooth term, β

(j)
i is a

vector of basis coefficients, and Si is the smoothing matrix associated with
the chosen penalty (Michelot et al., 2021). The smoothing parameters can
be estimated by optimising the Laplace-approximated marginal likelihood;
see Wood et al. (2017) for details. Model fitting is conducted using Template
Model Builder (Kristensen et al., 2016).

3 Results

The estimated state-dependent drift and diffusion in the whales’ postural
angles (pitch and roll) as functions of the proportion of time through dive,
along with 95% confidence intervals, are displayed in Figure 1. When state 1
(2) is active, the drift in pitch decreases (increases) through the dive, where
the diffusion is smallest (largest) in the middle of the dive, and increases
(decreases) towards its start and end. The diffusion in roll is much larger in
state 2 than in state 1, where the decrease in the middle of the dive (state
1) indicates gliding behaviour, which most often occurred during shallow
dives. The increased diffusion exhibited in state 2, in contrast, suggests
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FIGURE 1. Estimated state-dependent drift (top) and diffusion (bottom) in the
whales’ postural angles (pitch and roll) as functions of the proportion of time
through dive, along with 95% confidence intervals. Blue refers to state 1 (gliding
behaviour), while state 2 (foraging behaviour) is coloured in red.

continued stroking, which can be linked to foraging behaviour and most
often occurred during deep dives. The t.p.m.s that determine the switches
between these two dive types were estimated as

Γ̂Pitch =

(
0.832 0.168
0.433 0.567

)
, Γ̂Roll =

(
0.835 0.165
0.764 0.236

)
,

which imply the stationary distributions (0.720, 0.280) and (0.822, 0.178),
indicating that, according to both models, most dives were generated in
state 1. Furthermore, the high (low) persistence in state 1 (2) suggests that
a foraging dive, which is characterised by a high energy consumption, is
likely to be followed by multiple, less energy-consuming gliding dives.

4 Discussion

The proposed modelling framework can be extended in various ways. To
gain more detailed insights into the interaction of whales with their en-
vironment, covariates, such as exposure to underwater noise, can be in-
corporated into the hidden state process (do they alter their behaviour
only at the within-dive scale, e.g., by returning to the surface, or also at
the between-dives scale, e.g., by exhibiting different dive types after be-
ing exposed to underwater noise?). More generally, multivariate models,
or models with other stochastic processes beyond Brownian motion (e.g.,
Ornstein-Uhlenbeck processes) can be used, the investigation of which pro-
vides a promising avenue for future research.

Acknowledgments: The beaked whale data were collected as part of
the SOCAL–BRS project, primarily funded by the US Navy’s Chief of
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Abstract: The escape behaviour of larval zebrafish from a chasing predator
is analysed by using a fully nonparametric method, which estimates the condi-
tional local modes of a circular response variable. The performance of the method
is studied both asymptotically and through simulation experiments. This new
methodology allows to flexibly model the preferred escape directions of the fish
when startled by a predator.
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1 Introduction

A large number of works dealing with animal behaviour study the escape re-
sponses of different animals. More specifically, understanding escape strate-
gies when animals are chased by potential predators is a highly relevant
issue in the biological field (see Domenici et al., 2011). This work focuses
on analysing how larval zebrafish escape from predators, from a modal re-
gression perspective. The data were obtained by Nair et al. (2017) in an
experiment where a robot disguised as an adult zebrafish moved through
an aquarium startling zebrafish larvae. Our variable of interest, Φ, is the
direction of escape, while the stimulus direction Θ (the angle in which the
larvae perceive the threat) is considered as a covariate. Figure 1 depicts
a diagram showing how the variables were measured. Escape directions in
[−π, 0) are known as contralateral escapes (see Figure 1, left), which is the
expected behaviour of the animals. Directions in [0, π) indicate ipsilateral
escapes (Figure 1, right). Nair et al. (2017) used simple linear regression
to model the data (see left panel of Figure 2), obtaining that the angle of
stimulus was not a significant covariate. However, the circular (periodic)
nature of the variables makes usual regression methods not suitable for
a proper analysis. The middle panel of Figure 2 shows the same dataset
where the units of Φ are transformed to from [−π, π) to [0, 2π), along with

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Θ

Φ

Φ

FIGURE 1. Diagram of the zebrafish experiment, with a coloured larvae repre-
senting the initial position of the fish, the translucent one indicating the move-
ment of the larvae and the grey shape representing the robot predator.

the regression line estimated after the unit change, and it is clear that the
regression line obtained is different from the one in the left panel. In addi-
tion, conflictive conclusions are obtained when not taking into account the
circular nature of the variables, given that, after the unit transformation,
the angle of stimulus is found to be a significant covariate. To overcome this
problem, methods specifically tailored for circular data can be used. The
continuous line in the right panel of Figure 2 shows the circular nonpara-
metric estimator proposed by Di Marzio et al. (2013). However, although
this estimator accounts for the circular nature of the variables, it may lie
on regions without data, which is due to the multimodal structure of the
data.
We propose a new methodology where the conditional local modes of the
escape direction are estimated, instead of the conditional mean targeted by
classical methods, while still considering the periodic behaviour of the data.
The potential of the estimator is highlighted in the right panel of Figure 2,
where the dotted line represents the circular multimodal estimator, which
is able to capture the different trends in the data.
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FIGURE 2. Scatter plots of the zebrafish dataset with fitted regression lines (left
and middle) and nonparametric mean (right, continuous line) and modal (right,
dotted lines) estimators.
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Alonso-Pena and Crujeiras

2 Circular multimodal regression

The modal regression multifunction is defined as the local maxima of the
conditional density function for a given value of the predictor, i.e.,

M(θ) =

{
ϕ :

∂

∂ϕ
f(ϕ|θ) = 0,

∂2

∂ϕ2
f(ϕ|θ) < 0

}
, (1)

with f(ϕ|θ) being the conditional density of Φ given the value of Θ. Note
that M(θ) is not a function, but a multi-valued function or multifunction.
In order to estimate M(θ), we use an indirect approach: first, f(ϕ|θ) is es-
timated with a circular kernel regression method; afterwards, the modes of
the conditional density are computed iteratively with the so-called circular
mean shift algorithm.
More formally, given a bivariate sample {(Θi,Φi)}ni=1 from (Θ,Φ), the es-
timator of the conditional density (see Di Marzio et al., 2016) is given by

f̂ν,κ(ϕ|θ) =

(
n∑

i=1

Kν(Θi − θ)Kκ(Φi − ϕ)

)/(
n∑

i=1

Kν(Θi − θ)

)
,

where Kν and Kκ are circular kernel functions with concentration (smooth-
ing) parameters ν and κ, respectively. The local maxima of the condi-
tional circular kernel density estimator cannot be computed analytically,
and therefore a conditional version of the circular mean shift algorithm is
employed to compute them numerically. We summarise the algorithm when
the kernel associated to the response variable, Kκ, is a von Mises density.
For each value in the support of the predictor variable, namely θ, initial

values ϕ
(0)
1 , . . . , ϕ

(0)
k are selected. Then, for the rth initial angle, a local

maximum is computed by iterating until convergence

ϕ(l+1)
r = atan2

[
Sθ

(
ϕ(l)
r

)
, Cθ

(
ϕ(l)
r

)]
, l = 0, 1, . . .

where

Sθ

(
ϕ(l)
r

)
=

n∑
i=1

Kν(Θi − θ) exp{κ cos(Φi − ϕ(l)
r )} sinΦi

and

Cθ

(
ϕ(l)
r

)
=

n∑
i=1

Kν(Θi − θ) exp{κ cos(Φi − ϕ(l)
r )} cosΦi.

The conditional circular mean shift is, for each value θ, a gradient as-
cent method on the circumference, and converges to a local maximum of
f̂ν,κ(ϕ|θ). The multimodal regression estimator of (2), namely M̂(θ), is
formed by the collection of estimated local modes for each θ.
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In order to measure the quality of the estimator M̂(θ), error measures as
the Mean Squared Error are not adequate given that the estimator is a
multifunction, i.e., for each value of the predictor there might be several
different values of the estimated multifunction. Consequently, metrics usu-
ally employed in the set estimation context, such as the Hausdorff distance,
are considered. It can be proved that, under some regularity conditions, as
n, ν, κ → ∞,

H̃aus
[
M̂(θ),M(θ)

]
= O

(
ν−1 + κ−1

)
+OP

(√
κ3/2ν1/2

n

)
, (2)

where

H̃aus (A,B) = max

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
and d(x,A) = infz∈A[1− cos(x− z)]. It is interesting to note that the rate
of point-wise convergence of the multimodal regression estimator in (2)

coincides with the rate of convergence of the partial derivative of f̂ν,κ(ϕ|θ)
with respect to the response variable.

3 Simulation experiments

The finite sample performance of the estimators was investigated through a
Monte Carlo study with 500 replicates. We show results obtained when the
data was drawn from a multifunction with two different branches, given by
M(θ) = {3π/4 cos θ− π/2, π/2− cos θ}. Data belonging to each of the two
branches of the multifunction were simulated as Φ1i = 3π/4 cosΘ1i−π/2+
ε1i, Φ2i = π/2− cosΘ2i + ε2i, where the first subscript denotes the branch
number and ε1i, ε2i are random errors following a von Mises distribution
with zero mean and concentration parameters τ = 10, 12, 14.
To ascertain the quality of the estimators, the modal Integrated Circular

Error was computed as ICEm(M̂) =
∫ π

−π
H̃aus

[
M̂(θ),M(θ)

]
dθ. Monte

Carlo averages of ICEm are shown in Table 1 for different sample sizes. The
smoothing parameters were selected with a modal cross-validation method.
It can be seen that the errors diminish as the sample size increases and,
as expected, a higher concentration of the errors leads to smaller values of
the average ICEm.

4 Analysis of the zebrafish data

In order to study the preferred escape directions of the larval zebrafish
when startled by the robot predator, the multimodal regression estimator
was applied to the zebrafish dataset. The estimated multifunction is de-
picted on the right panel of Figure 2, as a dotted line. It shows that when
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TABLE 1. Monte Carlo averages of ICEm for the simulated model.

(n1, n2) τ = 10 τ = 12 τ = 14

(100, 100) 0.227 0.173 0.150
(100, 200) 0.232 0.159 0.120
(200, 200) 0.091 0.069 0.059
(200, 300) 0.092 0.066 0.049
(300, 300) 0.055 0.043 0.033

the robot appeared in the fish’s peripherical vision (stimulus directions
tending towards −π/4 or π), there are two estimated branches, one corre-
sponding to a contralateral escape and another one indicating an ipsilateral
escape. On the other hand, when the animals see the robot laterally (where
their eyes are located), there is just one estimated trend, indicating a con-
tralateral escape. This contrasts with the conclusions obtained with the
more classical conditional mean estimator (continuous line in right panel
of Figure 2). Note that when the multimodal estimator detects just one
escaping response, the estimated preferred directions are very similar to
the expected escape directions estimated with the method of Di Marzio et
al. (2013).
The multimodal estimator can also be used to perform inference from a
modal perspective, such as for the construction of prediction sets. For a
prediction level of 0.90, prediction sets for new observations are represented
in the right panel of Figure 3, where it is seen that the modal prediction
sets are narrower than the prediction bands based on the mean estimator
of Di Marzio et al. (2013) (left panel of Figure 3).
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FIGURE 3. Scatter plots of the zebrafish dataset with the mean (left) and modal
(right) regression estimators and 90% prediction sets.
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Abstract: The Demographic and Health Surveys (DHS) Program provides GPS
coordinates for visited clusters. However, these coordinates are jittered according
to a known jittering distribution to ensure privacy of participants. In recent work,
we developed a fast method to account for such jittering in a Bayesian hierarchical
model. This paper extends this approach to also account for uncertainty that
arises when spatial covariates are extracted from rasters based on jittered GPS
coordinates. We use this full geostatistical model with both the spatial effect
and covariates to estimate vaccination coverage based on the DHS survey in
Nigeria 2018 while accounting for jittering. The approach is fast and we find
that accounting for jittering on average gives relatively 6.4% lower coefficients of
variation for predictions and that the uncertainty about the effect of the covariates
increases compared to treating GPS coordinates as correct.

Keywords: Template Model Builder; Spatial Anonymization; Demographic
Health Survey; Measles Containing Vaccine.

1 Introduction

Uncertainty in spatial covariates is sometimes induced by uncertainty in
the associated spatial locations used to extract them. A common way to
address this is to ignore the positional error and fit the geostatistical model
using the covariate at the observed location. Another approach is to average
the covariate values throughout the raster pixels within the jittering zone
of each cluster and then to weigh them with respect to their distances
from the corresponding cluster center (Perez-Heydrich et al., 2013). This
might fail to capture some of the uncertainty due to assigning same average

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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value to the multiple locations. In this study we estimate the probability of
receiving one dose of measles-containing vaccine (MCV1) for 12-23 months
old children in Nigeria. We also aim to estimate the associations between
the covariates and the response.

2 Data and Methods

We use the Nigeria-2018 Demographic Health Survey (NDHS-2018). The
survey consists of 1,389 observed clusters that are scattered over 37 coun-
ties. We extract the number of 12-23 months old children who received a
dose of MCV1 vaccine, as the response variable for each cluster. In total
there are 3,210 children who fit this description. In previous work, we ac-
counted for jittering in survey clusters by creating a number of integration
points around each cluster center and integrating out the unknown loca-
tions from the joint likelihood function. This gives a mixture of different
likelihoods for each cluster.

Local Burden of Disease Vaccine Coverage Collaborators (2020) con-
ducted a study to map routine measles vaccination in low- and middle-
income countries. Among the covariates they have used, we included five,
all extracted from data rasters: elevation (Elev) from the mean sea level
in meters, population density (Pop) (estimated total number of people per
grid-cell), travel time (Travel) to the nearest city in minutes, urbanization
rate (Urb) and minimum distance (Dist) to the lakes and rivers in degrees.
Except for the urbanization rate and the minimum distance to the lakes
and rivers, all other covariates are transformed via ln(1 + x), before the
computations.

We include five covariates and a spatial random effect to explain the
spatial variation in survey responses. The DHS jitters urban clusters up to
2 km. 99% of the rural clusters are jittered up to 5 km, while the remaining
1% are jittered up to 10 km (Burgert et al., 2013), while the new locations
are required to remain within the same county. For clusters c = 1, . . . , C,
observations follow a binomial model:

yc|r(s∗), nc ∼ Binomial(nc, r(s
∗))

where, yc denotes the total number of children who received an MCV1 dose
among the nc children who are 12-23 months old and living in the corre-
sponding household cluster. Accordingly, we model the risk of receiving one
dose of MCV1 vaccine at unknown true locations s∗c ∈ R2 as follows:

logit(r(s∗)) = µ+ β⊺x(s∗) + u(s∗),

Here, the intercept and design matrix are denoted by µ and X, respectively.
u(·) is a Gaussian random field (GRF) with a Matérn covariance function
with marginal variance σ2

SF, range ρ, and fixed smoothness ν = 1. We
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constructed the approach that accounts for jittering based on numerically
integrating out unknown true locations, which is only a 2D integral for each
observation. We implement the approach using C++ to utilize autodiffer-
entiation via the TMB. Extending the approach into a full geostatistical
model with covariates involves extracting the values of covariates at each
integration point and include them in the computation process via the de-
sign matrix. Detailed explanation about the model and the application on
TMB can be found in (Altay et al., 2022).

3 Results and Discussion

We fitted the above model in two different ways: by assuming that the
observed locations are the true locations, and by applying the new method
that accounts for jittering. Figure 1 below shows the predicted posterior
expectations for the probabilities of receiving an MCV1 vaccine dose for
the children aged 12-23 months old, together with the corresponding coeffi-
cients of variations (CV), when jittering is accounted for. The figures show
that the vaccination probability decreases together with the increasing un-
certainty towards the north of Nigeria. Figure 2 shows the cross-plots of the
predicted posterior expectations for the probabilities and the correspond-
ing coefficient of variation values that are obtained from the standard and
jittering accounted models. Left hand side plot shows that the models tend
to yield different predictions, where the standard model appears to attenu-
ate the predictions close to 0 or 1 compared to the model that accounts for
jittering. It is also visible from the right hand side plot that the CVs are
smaller when jittering is accounted for. Table 1 shows that when positional
error is accounted for, there is a slight increase in the length of 95% credible
intervals of the corresponding estimated model parameters. We found out
that on average, we obtain relatively 6.4% lower CVs for the predictions,
when we account for jittering. The computation time increased from 1.85
minutes to 11.75 minutes in the new approach, but this is still quite fast
compared to the current methods with the prohibitively slow computation
times.

4 Conclusion

The new approach provides a fast implementation to account for the po-
sitional uncertainty in a geostatistical model including spatial covariates,
with a slight increase of uncertainty in covariates. The amount of difference
in the parameter estimates and the uncertainties indicate the importance
of accounting for jittering in the spatial covariates. In future work, we plan
to conduct simulation studies to evaluate model performance under vari-
ous scenarios. An interesting direction of research would be to compare the
presented method against the approach where the covariates are smoothed
by averaging them over the jittering zones around each cluster.
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TABLE 1. Intervals of covariate values, median parameter estimates and the
lengths of corresponding 95% credible intervals that are obtained from the model
that accounts for jittering. The medians and lengths in the parantheses belong
to the parameter estimates that are obtained from the standard model.

Parameters Value Interval Median Length

Intercept -0.98 (-0.76) 2.76 (2.62)
βDist (0, 2.24) 0.18 (0.24) 0.89 (0.95)
βUrb (0, 100) -0.012 (-0.004) 0.013 (0.006)
βTravel (0.00, 7.04) -0.03 (-0.03) 0.19 (0.14)
βElev (0.69, 7.99) 0.03 (0.02) 0.46 (0.45)
βPop (0, 7.59) 0.65 (0.38) 0.38 (0.23)
ρ 155 (127) 137 (112)

σ2
SF 0.84 (0.89) 0.30 (0.31)
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FIGURE 1. Predicted posterior expectations (“pred.”) for the probabilities of
receiving an MCV1 vaccine dose (left) and the corresponding coefficients of vari-
ations (CV) (right) for the model that accounts for jittering. The red points
indicate 1,322 DHS survey clusters in Nigeria.
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Abstract: The ranking of cyber-vulnerabilities based on their severity is a major
decision problem in the digital society. This ranking is often based on information
related to intrinsic properties of the cyber-vulnerabilities, but contextual factors
(diffusion of a vulnerable technology, available resources to exploit a vulnerabil-
ity) may have an impact on the actual risk attributed to cyber-incidents. This
work introduces a quantile regression model as a basis for the ranking of cyber-
vulnerability impact dimensions. The prioritisation of these impact dimensions
in relation to the quantile level is discussed, with the aim of supporting statistical
modelling for informed cyber-risk assessment and threat intelligence.

Keywords: Ranking; Quantile regression; Cyber-risk.

1 Introduction

Cyber-security is becoming a crosscutting issue for digital societies. Cyber-
vulnerabilities of devices, networks, systems, or Information and Communi-
cation Technologies (ICTs) may have an impact on both organisations and
individuals, since system failures and cyber-attacks may compromise or in-
terrupt service supply, or undermine the operational continuity of critical
infrastructures. New vulnerabilities are emerging as a consequence of large
digital connectivity, and even individual devices or sensors may represent
an access point to information systems through escalation procedures. In
addition to economic losses and potential impacts on safety, cyber-incidents
also relate to the improper use of personal or sensitive data, which leads
to privacy concerns.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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This context is leading regulatory bodies and companies to develop and
adopt new methods for cyber-risk assessment, aiming at a more informed
decision-making. Sources supporting these decisions are heterogeneous and
include severity rankings produced by Institutions (in particular, the Na-
tional Institute of Standards and Technology - NIST and Computer Se-
curity Incident Response Teams - CSIRTs), but also reports, expert eval-
uations, and data from web resources and databases. The decision-maker
can choose different (official and unofficial) sources to prioritise her actions,
both defensive or offensive, depending on her objectives.
In this contribution, we explore the role of risk level attribution in rank-
ing cyber-vulnerabilities based on a set of observations from different
databases. We start from a quantile regression model to infer the con-
ditional τ -level quantile given a set of predictor variables; then, we discuss
a criterion to prioritise severity attributes for cyber-vulnerabilities based
on the estimated parameters.
This work extends the literature of statistical modelling of cyber-risk, see
e.g. Giudici and Raffinetti (2021). We pay special attention to the different
prioritisation that a decision-maker can assess to mitigate (for defenders) or
exploit (for attackers) a cyber-vulnerability. The statistical modelling is also
relevant to connect different information sources, in particular technical
proprieties of a cyber-vulnerability (regressors) and actual data quantifying
hosts exposed to such a vulnerability.

2 Dataset

The attributes assessing the intrinsic impact of a cyber-vulnerability come
from the attack vector in the NIST model (Mell, Scarfone, and Romanosky,
2007). The attack vector is a 6-tuple of categorical variables that evaluate
the severity of a vulnerability. The three impact dimensions refer to the
potential impact on data Confidentiality (XC), Integrity (XI), and Avail-
ability (XA), respectively. Each of these attributes has three modalities:
“none”, “partial”, and “complete”. Three additional attributes assess tech-
nical characteristics for exploitation: we will discuss XAV, i.e. the Access
Vector with modalities “Requires local access”, “Local Network accessi-
ble”, and “Network accessible”. The remaining components refer to Access
Complexity (XAC), with modalities “high”, “medium”, and “low”, and Au-
thentication requirements (XAu), with modalities “Requires no authentica-
tion”, “Requires single instance of authentication”, and “Requires multiple
instances of authentication”. These variables represent the regressors in our
model.
The envisaged response variables y indicate the actual extent of a cyber-
vulnerability: in addition to the intrinsic severity from the attack vector,
they might depend on external factors too, e.g. the diffusion of vulnerable
technology, or available resources to exploit such weaknesses.
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We realised a dataset from observation of hosts exposed to known vul-
nerabilities: each vulnerability in the dataset is identified by a Common
Vulnerabilities and Exposures (CVE) code, is endowed with an associated
attack vector; for a selected sample of CVEs, we have scraped the Shodan
database (https://exposure.shodan.io) to retrieve exposure data from
different Countries during the period 1999-2021. The final dataset is com-
posed of n = 714 records, which represent the statistical units of our re-
gression model. The response variable is the number Ni of exposed hosts
reported in the Shodan database for the i-th CVE, i ∈ {1, . . . , n}.

3 Model definition

Setting Qτ := infy{y : τ ≤ F (y)) as the τ -th quantile for a random variable
y with cumulative distribution function (CDF) F , the regression model to
estimate Qτ based on n observed data and k regressors is

Qτ (yi|Xi, β) = XT
i · β(τ), i ∈ {1, . . . , n}. (1)

The estimated parameters β(τ) depend on the choice of the quantile level
τ . They are derived from (1) through the minimisation of

β̂(τ) := argminβ∈Rk

n∑
i=1

ϱτ (yi −XT
i · β) (2)

where
ϱτ (u) := u · (τ − I(u < 0)) (3)

and I is the characteristic function of a subset of R. We refer to Koenker
and Hallock (2001) and references therein for further details.
From the coefficient estimates given by (2), we get a criterion to rank the
attributes that describe the severity of a cyber-vulnerability based on the
risk-level attribution (the quantile level τ). In the present case study, the
attributes correspond to the components of the attack vector in a subset
I ⊆ {XC, . . . , XAu}. Being associated with categorical data, we introduce

Π := {(p, ℓ) : p ∈ {XC, . . . , XAu}, ℓ ∈ {1, . . . , Lp − 1}} (4)

where Lp is the number of modalities for the p-th variable; then, we adopt
an ANOVA representation considering parameters βπ(τ) for indicator vari-
ables Xπ indexed by π ∈ Π.
For each specification of the quantile level τ , the set of parameters estimated
through (2) can be used to produce a qualitative ranking of the attack
vector attributes. Specifically, for each τ we consider a subset S ⊆ Π such
that the associated variables Xπ (π ∈ S) in the regression model (1)-(2) are
statistically significant. Then, we order the modalities associated with these
variables based on the corresponding estimates β̂π. Formally, we define a
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partial ranking ≺τ on the set Π or, equivalently, on the regressors Xπ,
π ∈ Π: given π1, π2 ∈ Π, π1 ≺τ π2 means that the estimated effect β̂π1

of
the variable Xπ1 on the response variable, compared to a reference severity
level, e.g. the base level for the associated component of the attack vector,
is significantly smaller than the effect β̂π2

of Xπ2
.

4 Preliminary results

The regression model highlights a significant contribution of the exploitabil-
ity characteristics at given quantile levels. When we consider the attack vec-
tor modalities as regressors in (1), we find a positive value for β̂AV,1 = 14167
associated with the “local network accessible” property, with t-statistics
2.868 and p-value 0.426%. In general, the statistics maxπ∈Π{β̂π(τ)} in-
forms us on the attribute of the attack vector that, if positive, contributes
the most to raise the τ -quantile. Assuming that the (log-)exposure acquired
from Shodan relates to the actual tendency to detect a vulnerability, the
increase of the exposure coefficient associated with the τ -quantile is equiva-
lently described by a reduced population within that value of the exposure
coefficient.
Comparing Table 1 and Table 2, we see a ranking inversion following the
change of the quantile level, from τ = .5 to τ = .89: parameters estimated
for the “Partial” levels in both Confidentiality and Availability (denoted as
C1 and A1, respectively) provide different rankings depending on τ . The
model with both XC and XA is compared with the models without XC (at
τ = .5) or XA (at τ = .89): an ANOVA test returned a p-value smaller
than .001%, with F -values 25.906 at τ = .5 and 10.494 at τ = .89.

5 Conclusion and Future Work

This work is a preliminary study on statistical modelling for threat intel-
ligence, with particular attention to the information resources regarding
cyber-vulnerabilities and to the effects of risk acceptance/aversion.
The availability of resources to exploit cyber-vulnerabilities could be known
to both attackers and defenders, and this may represent another factor af-
fecting the actual evaluation of cyber-risk. We will extend the present model
taking into account the knowledge of exploits from dedicated databases
(e.g. ExploitDB, VulnDB).
On the other hand, a deeper investigation is needed to explore the relation
between statistical (partial) ranking models, formal decision criteria, and
sources of uncertainty that may give rise to multiple orders of priority
in the cyber-security domain. A better comprehension of this topic could
support its integration with information-theoretic methods for the analysis
of secure disclosure properties.
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TABLE 1. Summary of quantile regression at level τ = .5.

coef std err t P> |t| [0.025 0.975]

C1 -4394.00 422.147 -10.409 0.000 -5222.807 -3565.193
A1 -1393.00 463.765 -3.004 0.003 -2303.517 -482.483

TABLE 2. Summary of quantile regression at level τ = .89.

coef std err t P> |t| [0.025 0.975]

C1 -6321.00 3099.299 -2.039 0.042 -12400.00 -236.097
A1 -20320.00 3423.372 -5.935 0.000 -27000.00 -13600.00
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Abstract: In the setting of latent construct measurement, multidimensional item
response theory (IRT) models are particularly useful when the proper scoring
rule of observable items is unclear, as it happens when response categories in-
clude the ‘Don’t know’ (DK) option. In this contribution we illustrate how a
multidimensional IRT model may be suitably formulated to treat DK responses.
We also provide an extension to encompass random effects due to a repeated
measurement setting. The main contents of the approach are illustrated through
an application on data concerning the measurement of the Financial knowledge.

Keywords: ‘Don’t know’ responses; item response models; multidimensional.

1 Introduction

Don’t know (DK) responses provided as possible options in multiple-item
questionnaires may be due to several unknown reasons, such as poor self-
confidence in own competencies, awareness of lack of knowledge or no feel-
ing to express answers due to uncertainty or apathy. Naive approaches
usually consider these responses as incorrect answers or missing values,
leading to biased latent knowledge measures, as they fail to properly ac-
count for the unobserved differences between substantive and DK responses
(Krosnick et al., 2002).
Some authors showed that changing the instructions to suppress the DK
response improves reliability (Mondak, 2001). Others consider the DKs as
missing values by analysing them as a source of uncertainty (Rubin et al.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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1995). Here we consider DKs as responses to all extents because they inform
about a specific state of mind of the respondent, and therefore, it is not
correct to treat them as missing values.
In the present study, we focus on the measurement of financial knowledge
from survey items, taking into account respondents’ nonrandom propensity
to choose DK answers. To this aim, we analyze longitudinal data from the
first and second wave of the survey ‘Covid-19 Emergency: Italians between
fragility and financial resilience‘ carried out in 2020 and 2021 by the Italy’s
Committee for the Planning and Coordination of Financial Education Ac-
tivities and BVA-Doxa. In particular, we exploit the detailed information
on Italian adults’ knowledge obtained from six multiple-choice test ques-
tions on key financial concepts.
From a methodological point of view, we explicitly address the issue of
estimating the latent knowledge construct taking into account the DK op-
tion, through a Bidimensional latent mixed model (described in section 2)
suitably generalized. Model at issue relies on the assumption that the re-
sponse process may be disentangled in two consecutive steps driven by two
latent variables: propensity to answer and financial knowledge. At the first
step, both latent traits affect the probability of selecting a substantive re-
sponse versus DK option. At the second step, conditionally on the selection
of a substantive response, financial knowledge affects the probability of a
correct answer versus an incorrect one. Random-effects are encompassed
in the main model structure for assessing the variability due to repeated
responses provided by the same subject to same items.

2 Model description

Let denote the original item responses as Yip = 0, 1, . . . ,m − 1, with i =
1, . . . , I for items, p = 1, . . . , P for persons, j = 0, . . . ,m − 1 for response
categories, and m number of response categories. In our setting m = 3
corresponding to DK option (Yip = 0), incorrect response (Yip = 1), and
correct response (Yip = 2). Then, each item is disentangled in sub-items,

denoted by Y
(r)
ip = 0, 1, with r = 1, . . . , R as an index for the decisional

node; in our proposal R = 2. See Figure 1 for a graphical representation
of the multi-node response process through a tree structure. Denoting by
θpt = (θ1pt, θ2pt)

′ the vector of latent traits driving the response process,

across t = 1, 2, . . . , T time points, both a substantive answer (i.e., Y
(1)
ipt = 1

vs. Y
(1)
ipt = 0 if DK is selected) to a generic item i and the value (i.e.,

Y
(2)
ipt = 1 for correct answer vs. Y

(2)
ipt = 0 for incorrect answer) observed on

item i conditionally on having selected a substantive answer are explained
through a Bidimensional latent regression two-parameter (2PL) model, as
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FIGURE 1. Linear response tree for the binary response categories and DK option

follows:

logit
[
P (Y

(1)
ipt = 1|θpt)

]
= γ

(1)
i θpt − β

(1)
i =

∑
d δ

(1)
di γ

(1)
di θdpt − β

(1)
i (1)

logit
[
P (Y

(2)
ipt = 1|θpt, Y (1)

ipt = 1)
]
= γ

(2)
i θpt − β

(2)
i =

∑
d δ

(2)
di γ

(2)
di θdpt − β

(2)
i .

Here δ
(1)
di and δ

(2)
di are indicator functions assuming value 1 if item i mea-

sures latent trait d (d = 1, 2), and 0 otherwise; γ
(1)
i = (γ

(1)
1i , γ

(1)
2i )′ and

γ
(2)
i = (γ

(2)
1i , γ

(2)
2i )′ are vectors of discrimination parameters for items an-

swered at nodes 1 and 2, respectively; β
(1)
i and β

(2)
i represent difficulty

parameters. According to the specification of pairs (δ
(1)
di , δ

(2)
di ), different as-

sumptions about the role of the latent traits are considered.
The presence of a unique latent trait is obtained as a special case, when

(δ
(1)
1i , δ

(1)
2i ) = (1, 0) and (δ

(2)
1i , δ

(2)
2i ) = (1, 0), or vice-versa. This happens

when unidimensionality assumption holds that is a same latent trait affects

both the types of responses, whereas different combinations of (δ
(1)
di , δ

(2)
di )

are referred to multiple latent traits. For the latter we may distinguish two
situations:

� a between-item multidimensional where (δ
(1)
1i , δ

(1)
2i ) = (1, 0) , and

(δ
(2)
1i , δ

(2)
2i ) = (0, 1) for all items i = 1, . . . , I.

� a within-item multidimensional structure of latent traits where θ1pt
only affects the DK answering (node 1 in Figure 1), whereas θ2pt only
affects the substantive answering (node 2 in Figure 1).

Model in eqs. 1 may be easily generalized to allow for individual charac-
teristics that may affect the latent traits encompassing mixed effects too.
Thus, a latent mixed multidimensional 2PL model is obtained substituting
θdp denoting the T -by-1 vector for person p across T time points with

θdp =Xβ +Zνp + ϵp, d = 1, 2, (2)
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where X and Z are fixed and random effects design matrices, respectively,
and ϵp is T -by-1 vector of residuals. The distribution of the random effects
are a multivariate normal (Gaussian) distribution with mean 0 and q × q
variance-covariance matrix Σ, that is ν ∼ N(0,Σ).
For a simple linear growth model with a a single person-specific intercept
and slope, we can rewrite eq. 2 as

θpt = π0p + π1p × (t− 1) + ϵpt,

where π0p and π1p are the individual intercept and slope parameters.

From inferential point of view, let y
(1)
pt denote the vector of responses of

individual p (p = 1, 2, . . . , n) to items 1, 2, . . . , I, across t = 1, 2, . . . , T .
Thus, the manifest distribution for individual p across t is given by

P (y
(1)
pt ,y

(2)
pt ) = P (y

(1)
pt ,y

(2)
pt |θpt)P (θpt).

Here

P (y
(1)
pt ,y

(2)
pt |θpt) =

I∏
i=1(y

(1)
ipt=0)

P (Y
(2)
ipt = 1|θpt)y

(2)
i ·

[
1− P (Y

(2)
ipt = 1|θpt)

]1−y
(2)
i

·
I∏

i=1

P (Y
(1)
ipt = 1|θpt)y

(1)
i ·

[
1− P (Y

(1)
ipt = 1|θpt)

]1−y
(1)
i

,

with P (Y
(1)
ipt = 1|θpt) and P (Y

(2)
ipt = 1|θpt) obtained from eqs. (1).

From the manifest distribution P (y
(1)
pt ,y

(2)
pt ) we define the likelihood func-

tion as

L(ψ) =
T∏

t=1

n∏
p=1

P (y
(1)
pt ,y

(2)
pt ).

Many computational methods for mixed models with multiple grouping
factors are designed for hierarchical models in which the grouping fac-
tors form a strictly nested sequence. Preliminary results are obtained by
means of a hybrid algorithm which benefits from both Bayesian and fre-
quentist approaches to parameter estimation in order to avoid the compu-
tational complexity of evaluating multiple integrals in confirmatory item
response models (see Cai (2010) for details). For further inferential issues
see Chalmers (2015).

3 Preliminary data analysis

To calibrate the model preliminary results have been exploited on each wave
separately where different models were computed. Fitting results favour a
within-item multidimensional model, as remarked by AIC and BIC indexes
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TABLE 1. Model selection: AIC and BIC indexes for multidim. 2PL models

First wave Second wave

Assumption AIC BIC AIC BIC
Unidimensionality 35623.75 35774.96 34941.14 35092.36
Between-item bidim. 35553.31 35684.53 34624.63 34775.63
Within-item bidim. 35177.27 35366.30 34325.69 34514.72
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FIGURE 2. Estimated latent traits. Top panel: first wave; bottom panel: second
wave

in Table 1. Thus, we may conceive the response process as driven by
two latent traits: (i) propensity to answer, described by latent variable
θ1p, that affects the selection of DK option versus a substantive category;
(ii) financial knowledge, described by latent variable θ2p, that affects both
outcome of node 1 and outcome of node 2. The empirical distributions of
the two estimated latent traits for both waves are shown in Figure 2. Our
results clearly point out that DK responses provide significant insights on
respondents’ financial competencies and they should be taken into account
to properly measure the underlying levels of knowledge. In Table 2 are

displayed the estimates of item parameters γ
(r)
1i , γ

(r)
2i , and β

(r)
i of the within-

item bidimensional 2PL model selected for each wave. Parameters β
(r)
i

denote the “easiness” of item i: higher the easiness, higher is the probability
of observing answer ‘1’ on the item (i.e., observing answer other than ‘DK’
for items at Node 1 and observing answer ‘correct’ for items at Node 2).
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TABLE 2. Within-item bidimensional 2PL model: estimates of item parameters

First wave Second wave

Node r Item i γ
(r)
1i γ

(r)
2i β

(r)
i γ

(r)
1i γ

(r)
2i β

(r)
i

1 int (i = 1) 2.954 1.455 5.549 2.785 1.608 5.406
1 infl (i = 2) 2.437 1.050 3.673 2.075 1.025 3.341
1 div (i = 3) 2.148 1.740 2.595 2.604 1.886 3.015
1 mortg (i = 4) 2.114 1.829 3.049 2.217 1.485 2.979
1 compint (i = 5) 2.374 1.158 2.403 2.632 1.102 2.509
1 riskret (i = 6) 2.223 2.482 3.676 2.812 2.542 4.203
2 int (i = 1) – 1.366 1.699 – 1.350 1.704
2 infl (i = 2) – 1.676 1.870 – 1.899 1.959
2 div (i = 3) – 0.517 1.520 – 0.382 1.615
2 mortg (i = 4) – 0.939 0.935 – 0.999 1.056
2 compint (i = 5) – 0.976 1.025 – 1.108 1.281
2 riskret (i = 6) – 2.434 3.134 – 3.437 3.741

Parameters γ
(r)
1i and γ

(r)
2i (r = 1, 2) denote how each item “discriminates”

between individuals with different levels of the underlying latent trait (θ1
or θ2, respectively). They can be interpreted as factor loadings in a factor
analysis, denoting the contribution of each item to the measurement of
the related latent trait. Results are very similar in the two waves even if a
slightly improving in the second wave appears for some item when financial
knowledge is considered. It suggests the possible extension takeing into
account mixed effects.
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Abstract: We consider estimating the effect of a treatment on a given outcome
measured on subjects tested both before and after treatment assignment. A vast
literature compares the competing approaches of modeling the post-test score
conditionally on the pre-test score versus modeling the difference, namely the
gain score. Our contribution resides in analyzing the merits and drawbacks of
the two approaches in a multilevel setting. This is relevant in many fields, for
example education with students nested into schools. The multilevel structure
raises peculiar issues related to the contextual effects and the distinction between
individual-level and cluster-level treatments. We derive approximate analytical
results and compare the two approaches by a simulation study.
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1 Introduction

We consider the problem of estimating the school effect on student achieve-
ment, when a pre-test is available. Our work is inspired by achievement
tests implemented at the 5th grade (end of primary school) and 8th grade
(end of lower secondary school) by the Italian agency for the evaluation of
school system (Invalsi). We merge students with scores on these two grades
to assess the school value added based on the progress from grade 5th to
grade 8th. Specifically, we aim to evaluate if the school effect is different
between public and private schools, controlling for possible confounders.
While some confounders are observed, e.g. gender, others are not, such as

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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ability. Indeed the ability is not directly observed, but measured by some
instrument like the pre-test.
Two main methodological approaches have been considered in the litera-
ture to deal with the estimation of the effect of a given covariate when
pre-test measures of the outcome are available (Kim and Steiner, 2019):
the conditioning approach and the gain score approach. The conditioning
approach consists in estimating the effect of interest on the post-test score,
conditionally on the pre-test score. On the other hand, in the gain score
approach the considered outcome is the gain score, namely the difference
between post-test and pre-test scores.
The conditioning approach is implemented via regression models or match-
ing on the pre-test score, relying on the unconfoundedness assumption
(Arpino and Aassve, 2013), namely the pre-test score is sufficient to re-
move confounding. On the other hand, the gain score approach is related
to difference-in-difference methods, which are devised to remove the effect
of unobservable confounders under the assumption that such confounders
have a time-invariant effect, known as common trend assumption. In such
a case, taking the first difference of the outcome removes confounding (e.g.
Lechner, 2011).
Recently, Kim and Steiner (2019) reconsidered the choice between the con-
ditioning and gain score approaches. In particular, they derive analytical
results for a linear model without random effects. The treatment variable
Z affects the post-test score Y , while an unobservable ability A affects both
Z and Y . Thus, A is an unobserved confounder. In addition, the ability A
affects the pre-test score P . If P is measure of A with high reliability (Cron-
bach alpha), conditioning on P removes most of the confounding effect of
A. On the other hand, a low pre-test reliability suggests to prefer the gain
score approach, which is not affected by the reliability. However, the gain
score approach relies on the validity of the common trend assumption. Kim
and Steiner (2019) derive formulas for the bias of the estimated effect of Z
on Y under the two approaches, highlighting the assumptions required for
unbiasedness.
In this contribution, we compare the conditioning and gain score ap-
proaches in a more complex setting with hierarchical data using a random
intercept linear model. Specifically, we consider students (level 1 units)
nested within schools (level 2 units), where ability, pre-test and post-test
scores are level 1 variables, while the treatment is a level 2 binary variable
(public vs private school). Moreover, we investigate through a simulation
study the performances of the estimators in terms of bias.

2 Simulation study: main results

For a treatment at individual level, our results confirm the literature find-
ings for a single-level setting. Specifically, the conditioning approach gives
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a biased estimator of the treatment effect whenever the pre-test is affected
by measurement error, though the bias disappears if the pre-test and post-
test scores are affected by a common source of error of the same magnitude.
As a consequence, designs with the same instrument at pre-test and post-
test should be preferred as they help reducing the bias. The gain score
approach provides an unbiased estimator if the common trend assumption
holds at the individual level, regardless of the assumption holding at cluster
level. For an individual-level treatment, including the cluster mean of the
pre-test score as a regressor is not recommended, as it introduces further
measurement error without reducing the bias. On the other hand, the find-
ings for a treatment at cluster level are different because the cluster mean
of the latent ability acts as a confounder. Thus, its observable counterpart,
namely the cluster mean of the pre-test score, should be inserted as a re-
gressor. However, this is not always sufficient to completely eliminate the
bias, because the cluster mean of the pre-test is affected by measurement
error. The issue may be relevant with small clusters (e.g., size 4 in our
simulation study). Anyway, also in this context using the cluster mean as
a regressor is generally convenient because it reduces the bias. Moreover,
it is worth noting that, if the cluster mean of the pre-test score is used as
a regressor, then the conditioning and gain score approaches provide the
same estimates of the treatment effect, regardless of the cluster size.

3 Case study

We aim at evaluating the effect of the Italian lower secondary schools on
student achievement measured by Invalsi tests, focusing on the differences
between public and private schools. To this end, we alternatively apply the
conditioning and the gain score approaches, outlined in Section 1.
The data set collects information on a cohort of students that participated
in the Italian language and mathematics Invalsi tests at grades 5th and
8th (i.e., the last year of the primary school and the last year of the lower
secondary school, respectively). The data set has been obtained by merging
data on students who attended the 5th grade in school year 2013-2014 with
data on students who attended the 8th grade in school year 2016-2017.
We retain data on students present in both occasions. The resulting data
set consists of 436, 889 students who took part on both occasions: 427, 950
participated in both occasions of the language test, 427, 256 participated in
both occasions of the math test. A subset of 418, 330 students participated
in both occasions of both tests.
The students are nested in 5, 777 Italian schools. The average number of
tested students per school is 103.91 with a standard deviation of 54.97 (min
= 1; max = 334).
Each of the two achievement tests is composed of a set of items measuring
the unobservable ability in language and mathematics, respectively. Items
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are dichotomously scored, with value 1 for a correct answer and value 0 for
a wrong answer. The selection of the set of items relies on internationally
validated methods based on the Rasch model (Rasch,1960). For this reason,
the ability level of a student is measured by the raw score (i.e., the total
number of correct answers to the test items). As the number of items is
different across subject areas (language and mathematics) and grades, we
divide the raw scores by their maximum so that they are normalised in the
range 0-100.
Several background variables are available both at student and school lev-
els. Student covariates include gender, citizenship, and marks in language
and mathematics resulting from the school reports. Data also include in-
formation about the parents educational level and job condition, which are
exploited by Invalsi to define an index of the socio-economic status. In addi-
tion, a wide set of indicators measured at the end of the 5th grade provides
information on student material deprivation, motivation and interest in
learning, and relations with the class mates. School characteristics include
information on the geographical location (municipality, urban area, alti-
metric area, and population density), the average number of students per
class and the type of school (public vs private). Other school-level variables
are obtained by averaging the student level characteristics (e.g., proportion
of immigrants per school).
We specify a multilevel model (Goldstein, 2010) with students at level 1
and schools at level 2. In order to compare the conditioning and the gain
score approaches, we specify two versions of the model. In the first version,
the response variable is the post-test score (8th grade test), while the pre-
test score enters as a covariate. In the second version, the response variable
is the gain score (difference between the 8th and 5th grade tests), while the
pre-test score is omitted from the covariates. Both versions of the model
include the treatment variable, that is the indicator of the type of school
(public vs private), as well as student and school characteristics.
The estimated effect of private school in the final model is 0.69 (s.e.0.246) in
the conditioning approach and 0.67 (s.e.0.250) in the gain score approach.
This effect is significant and positive, but it is quite small, given that the
test score has an average of 68.5 with a standard deviation of 16.3.
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Abstract: We propose a novel semi-supervised learning method to monitor the
State of Health of lithium-ion batteries, a prominent technology for the electrifi-
cation of the transport sector. Our approach enables State of Health monitoring
of batteries with no labeled data, starting from a minimal set of labeled data
from another similar battery. This can be achieved by exploiting the relation be-
tween a pseudo-capacity measure and the total capacity of the labeled data. Our
results with operational data from maritime batteries show that the approach
is valid and can lead to significant progress in failure prevention, operational
optimization, and for planning batteries at the design stage.
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1 Motivating Problem and Data Description

Monitoring of the State of Health (SoH) of lithium-ion (Li-ion) batteries is
crucial for maritime applications. In fact, over time and over usage Li-ion
batteries undergo ageing mechanisms that ultimately lead to battery fail-
ure; the consequences for a vessel at sea can be potentially catastrophic,
therefore it is compelling to assess the battery conditions with good accu-
racy.
One way of quantifying the SoH is based on the degradation of the battery
capacity (Vanem et al., 2021):

SoHi =
Cavailable

Cnominal

× 100 (%), (1)

where Cavailable is the actually available capacity, and Cnominal is the nominal
capacity of the battery. However, estimating the capacity itself is often a

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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demanding exercise. It is common practice in the maritime field to carry out
annual tests, that enable an estimate of the battery capacity. Such tests,
however, are burdensome and time-consuming, and provide very sparse
capacity assessments. Further, as they are performed under different con-
ditions (temperature, durations, etc.), they can hardly be related to each
other, resulting to some extent inaccurate. An efficient method for con-
tinuous battery diagnostic, thus, is strongly needed. Data-driven methods
can be greatly advantageous as they are agnostic to the real and highly
complex physical problem, they are ductile and can be used for different
batteries (Vanem et al., 2021).
Operating data for this analysis are provided by a leading supplier of energy
storage systems for maritime applications. The data pertain to the battery
systems of three vessels, which we regard as three different datasets. For
each of them, we have high-frequency sensor data: temperature, voltage
and current intensity measurements, together with the battery State of
Charge (SoC) which we regard as sensor data insofar as it is provided by
the company with good accuracy. Such variables are continuously measured
from the beginning of operation until 4.5 or 5.5 years later, though there
are periods of missing data in all datasets.
Our minimal set of labeled data consists of three data-points for one of the
vessels, obtained from three SoH tests conducted in years that are not nec-
essarily consecutive. Our approach is based on relating the discharge phases
of the batteries while they age over years: thus, we pre-process the data
to go from continuous measurements series to single events, the discharge
cycles, identified on the basis of changes of sign in the SoC derivative.

2 Semi-Supervised Learning Methodology

We will refer to the three datasets according to the following:

� Reference data: data from the dataset with the three labeled data-
points (vessel A);

� Target data: data from the other two datasets (vessels B and C).

Consequently, the labeled cycles from vessel A will be called reference cy-
cles, while all cycles from the other two vessels are target cycles; our aim
is to predict the total capacity of the battery at the target cycles.
Our approach relies on a fundamental assumption: the SoH can be consid-
ered constant for a time window around the day where the measurement
was taken. The assumption is valid as the SoH is known to degrade gently
and almost linearly in the first years of operations, after an initial short
stage in which the degradation is more pronunced, and before a final stage
where the decay is faster and non-linear (Edge et al., 2021). This enables us
to enlarge the set of reference cycles. The method develops in three steps:
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1. Cycle classification: using a tree-like classification, cycles with similar
characteristics are grouped together, and each class is treated inde-
pendently. This is important to account for the large impact that
different conditions (temperature, SoC range, C-rate, etc.) have on
the estimated capacity. At the end of this step, the data are organised
in tables containing cycles with similar characteristics. An example
is provided in Table 1, where the first two cycles are from the refer-
ence dataset, and hence they have an estimated SoH, and three other
similar cycles in datasets B and C have been matched.

2. Model training: using the reference cycles, we train a linear model
in each class. The total capacity of the battery as from the SoH test
is our dependent variable; the number of features entering the model
depends on how many reference cycles we have in the considered class.
In all cases we input the pseudo-capacity,

C̃ =

∫ tend

tstart

I(t) dt; (2)

optionally, cycle characteristics such as duration, initial time, variance
in the C-rate and temperature etc. are also included in the model.
We discard all classes having models with R2 < 0.6.

3. Total capacity estimation: in each class, we get capacity estimates for
all target cycles from the model trained at step 2.

The capacity estimates from different classes are then gathered together
and converted to the SoH scale. In real applications it is often convenient to
have weekly or monthly SoH estimates, therefore we do a weighted average
of the estimations where the weights are the reciprocal of the uncertain-
ties estimated by the model. This is done in order to ensure that highly
uncertain estimates contribute very little to the final estimate.

TABLE 1. Example of a few cycles from the same class: the first two rows are
cycles from the reference dataset, and hence they have an estimated SoH. Other
three similar cycles in datasets B and C have been matched and are a target for
capacity estimation.

SoC1 SoC2 avg cRate max temp min temp SoH dataset

89% 73% -0.372 28◦ 24◦ 92.4% A
89% 73% -0.379 27◦ 23◦ 92.4% A
90% 73% -0.374 27◦ 24◦ – B
89% 72% -0.379 27◦ 23◦ – B
89% 71% -0.377 27◦ 24◦ – C
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3 Multivariable Fractional Polynomials for SoH
modelling

The semi-supervised approach provides SoH estimates which transform the
large unlabelled datasets into training data for modelling the battery degra-
dation: the Multivariable Fractional Polynomials (MFP) approach (Sauer-
brei and Royston, 1999) has been chosen for the purpose, in view of the
encouraging results achieved on lab data in a previous work (Bertinelli
Salucci et al., 2022). The response variable of the model is the monthly
change in the battery SoH with respect to the initial value SoH(t0),

y = ∆SoH(t) = SoH(t0)− SoH(t), (3)

while the set of candidate covariates is derived from the battery sensor data
for all charge and discharge cycles, including a few significative interaction
terms. All features are cumulative over each month (e.g. sum of durations
of charge or discharge phases, average C-rates, ...), except for the equiva-
lent full cycles measure (efc) which is cumulative over the whole history of
the battery system. The MFP algorithm selects the most suitable polyno-
mial transformations of the covariates among a set of possible choices, and
variable selection is also performed (significance level P < 0.05) to achieve
potential variance reduction and ease the model interpretability. The re-
gression model has been trained on data from vessel B and tested on vessel
C.

4 Results and Conclusions

Monthly averaged results obtained with the semi-supervised learning ap-
proach are shown in Figure 1 and Figure 2 for the two target ships. The
unavailability of frequent and reliable labels makes it difficult to provide
a specific accuracy assessment for the method; however, our results are in
line with the typical degradation patterns of Li-ion batteries depicted by
Edge et al. (2021), as well as with battery experts’ expectations.
The left panel of Figure 3 shows the results obtained in predicting the SoH
degradation of vessel C with the MFP model trained on data from vessel
B (Table refbertinellisalucci:tab2). The plot confirms the effectiveness of
MFP regression for modelling SoH degradation of lithium-ion batteries:
the predicted values are all very close to the estimates obtained with the
semi-supervised approach, with a normalized Root Mean Squared error of
0.85%. The right panel of the figure presents an histogram of the normalised
absolute error: most of the errors are below 1.5%, and all errors below 2%.
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FIGURE 1. Montly averaged SoH estimates for vessel B on full scale (left) and
reduced scale 80-100% (right).
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FIGURE 2. Montly averaged SoH estimates for vessel C on full scale (left) and
reduced scale 80-100% (right).
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FIGURE 3. Left: State of Health degradation results for vessel C using the MFP
regression model. Right: histogram of the normalised absolute error.
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TABLE 2. MFP regression model trained on data from vessel B. The features
entering the model after the variable selection mechanism are reported together
with their estimated coefficients, standard errors and corresponding p-values: efc
is a measure of the equivalent full cycles of the battery; Vin,disch. is the average
initial voltage of the discharges cycles in one month; Tmin,3 and Tmin,1 are the
monthly averages of the minimum values of two temperature sensors.

est. coefficient std. error p-value

Intercept -6.395 1.62 0.0002

efc/105 83.31 20.91 0.0002

Vin,disch. : efc/10
5 -16.53 4.42 0.0005

Tmin,3/10 -26.19 8.25 0.0025

Tmin,1/10 30.14 8.93 0.0014
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Abstract: Time-varying parameter models are widely used in statistics for the
analysis of dynamical systems. In such a models the risk of over-parametrization
is high, thus perform model selection and achieve sparse estimates is a desired
property. The latter is defined over two directions: vertical, where we look at the
parameter vector at a fixed time, and horizontal, where we focus on a given vari-
able and observe its behaviour across the timeline. In this paper, we tackle the
estimation within a Bayesian framework and we extend the Bernoulli-Gaussian
model for variable selection to deal with time varying sparsity. We assume a time
dependence both in the dynamic of the regression coefficients and in the inclu-
sion probabilities. We propose a variational Bayes approach for joint parameter
estimation and signal extraction that relies on a global flexible representation of
the latent states through a non-stationary Gaussian Markov random field.

Keywords: Bernoulli-Gaussian model; Dynamic sparsity; Variational Bayes.

1 Bayesian TVP regression with dynamic sparsity

The time-varying parameter regression model with variable selection can
be expressed through the Bernoulli-Gaussian specification in the fashion of
Ormerod et al. (2017):

yt = xT

t Γtβt + εt, εt ∼ N(0, σ2
t ), (1)

where yt is the response and xt is a set of covariates associated to the
time-varying parameter βt ∈ Rp. Moreover, each coefficient βj,t can be
either included or not depending on the value of the diagonal elements
id Γt, namely γj,t ∈ {0, 1}. To account for a time dependence structure,

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
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we assume a random walk dynamic for βj,t and for the logarithm of the
variance ht = log σ2

t :

βj,t = βj,t−1 + vj,t, vj,t ∼ N(0, η2j ), βj,0 ∼ N(0, k0η
2
j ), (2)

ht = ht−1 + wt, wt ∼ N(0, ν2), h0 ∼ N(0, k0ν
2). (3)

The latter formulation is equivalent to consider a Gaussian Markow ran-
dom field (GMRF) for βj ∼ Nn+1(0, η

2
jQ

−1) and h ∼ Nn+1(0, ν
2Q−1),

where the matrix Q assumes a tridiagonal structure. The indicator vari-
ables γj,t are assumed to be independent Bernoulli γj,t|ωj,t ∼ Bern(pj,t)
given the parameters ωj,t, where ωj,t = logit(pj,t). Ročková and McAlinn
(2021) assume a deterministic dynamic for each pj,t, while Koop and Koro-
bilis (2020) place an independent prior distribution on ωj,t. An important
contribution of this work is that we assume a stochastic process for the
inclusion probabilities. Similarly as for βj , we assume a GMRF specifi-
cation for ωj ∼ Nn+1(0, ξ

2Q−1). To complete the Bayesian model spec-
ification we place the following prior distributions for the variances pa-
rameters ν2 ∼ IG(Aν , Bν), η

2
j ∼ IG(Aη, Bη), and ξ2j ∼ IG(Aξ, Bξ). The

joint distribution of the data and the high-dimensional parameter vector
ϑ = (hT,βT,γT,ωT, ν2,η2T, ξ2T)T can be written as the following product:

p(y,ϑ) = p(y|ϑ)p(h)p(ν2)
p∏

j=1

p(βj |η2j )p(γj |ωj)p(ωj |ξ2j )p(η2j )p(ξ2j ), (4)

where p(γj |ωj) =
∏n

t=1 p(γj,t|ωj,t) also factorizes over time. In order to
simplify the computations, we exploit the Polya-Gamma representation of
p(γj,t|ωj,t) =

∫ +∞
0

p(γj,t|zj,t, ωj,t)p(zj,t|ωj,t) dzj,t, where p(zj,t) is the den-
sity function of a Polya-Gamma PG(1, 0). Now we can consider an aug-
mented version of (4) which has the advantage of recognizing all the full
conditionals as known distribution functions. Instead of traditional MCMC
estimation methods, we implement a variational Bayes (VB) algorithm ex-
ploiting the mean-field approximation paradigm which consists in providing
a factorization of the joint variational density q. The specification of q we
propose is the following:

q(ϑ) = q(h)q(ν2)

p∏
j=1

q(βj)p(ωj)p(η
2
j )p(ξ

2
j )

n∏
t=1

q(γj,t)q(zj,t), (5)

where the main feature is the fact that we keep a joint density for h, βj , and
ωj in order to preserve the time dynamic in the regression parameters and
in the inclusion probabilities. Moreover, we consider a parametric approx-
imation for the joint vector of log-volatility with a multivariate gaussian
distribution q(h) ∼ Nn+1(µq(h),Σq(h)). The estimation of remaining den-
sities q in (5) is carried out exploiting the Coordinate Ascent Variational
Inference (CAVI) algorithm presented in Ormerod and Wand (2010).
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2 Simulation study

Here we consider 100 replicates from the following data generating process:
yt = x⊺

tΓtβt+ εt, with εt ∼ N(0, 0.16), for t = 1, . . . , 180, where the entries
of xt are independently generated from a standard Gaussian. The dimen-
sion of the regression parameter βt is equal to p = p1 + p01 + p0 = 50
where p1 = 1 is the number of parameters always included (β1), p01 = 4
is the number of coefficients which can be included or not at each time
t (β2:5), and p0 = 45 is the number of parameters that are always zero
(β6:50). The p1 parameters are generated from an AR(1) with uncondi-
tional mean far from zero, ϕ1 = 0.98 and conditional variance equal to
0.1. For the p01 parameters we proceed as follows: divide the interval in
sub-periods [1, 180] = [1, t1] ∪ [t1 + 1, t1 + t2] ∪ ... ∪ [t1 + . . .+ tn + 1, 180],
where tk ∼ Pois(60), and then alternate periods where γj,t = 0 and γj,t = 1
starting randomly. For the intervals where γj,t = 1 we generate a process as
for p1. We compare our method (BGTVP), the dynamic variable selection

MSE: always in MSE: always out MSE: dynamic sparsity

ACC: always in ACC: always out ACC: dynamic sparsity

BGTVP DSS(0.90)DSS(0.98) VBDVS BGTVP DSS(0.90)DSS(0.98) VBDVS BGTVP DSS(0.90)DSS(0.98) VBDVS

BGTVP DSS(0.90)DSS(0.98) VBDVS BGTVP DSS(0.90)DSS(0.98) VBDVS BGTVP DSS(0.90)DSS(0.98) VBDVS
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

BGTVP DSS 0.90 DSS 0.98 VBDVS

FIGURE 1. Simulation results. We compare the strategies in terms of ACC (top)
and MSE (bottom). We provide different panels for different behavior of βj .

(VBDVS) of Koop and Korobilis (2020), and the dynamic spike-and-slab
(DSS) of Ročková and McAlinn (2021) for two different values of marginal
importance weight Θ = {0.90, 0.98}. We look both at the mean squared er-
ror (MSE) and at the classification accuracy (ACC) to assess the capability
of each approach to distinguish true signal from the noise. The results are
depicted in Figure 1, both for all p and separately for p1, p01 and p0. The
different methods have a perfect accuracy in recognize βj that are always
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included in the true model. Our approach outperforms the competitors in
determine whether a coefficient is always equal to zero in its path. Looking
at the results when dynamic sparsity is considered for βj , the performances
are similar across methods. However it can e noticed that BGTVP tends
to distinguish better the true signal from the noise even in this setting.
Similar conclusions can be derived looking at the MSE measure.

3 Application to GDP deflator forecasting

Gross domestic product (GDP) deflator forecasting is a widely studied real-
data example in the context of time-varying parameter models (see Kalli
and Griffin, 2014). The sample period ranges from the second quarter of
1965 to first quarter of 2011. We consider as predictors 31 exogenous vari-
ables and first three lags of the response variable in order to account for
an autoregressive behaviour. More details on the data are available in Ap-
pendix B of Kalli and Griffin (2014). Figure 2 shows the estimated stochas-
tic variance and the in sample estimates of the GDP deflator together with
its credibility intervals.

0

1

2

3

1970 1980 1990 2000 2010

Observed Estimate

GDP deflator

0.0

0.1

0.2

1970 1980 1990 2000 2010

Volatility

FIGURE 2. Fitted values with credibility intervals against observed values (left
panel) and stochastic volatility estimate (right panel).

Figure 3 shows the estimate of the regression parameters that are selected
in the model and their inclusion probabilities. The results are very sparse:
in fact we select only 6 coefficients (intercept included) for the analysis.
However, the results are reasonable compared to other studies, for example
the variables selected by our method are a subset of those chosen in Kalli
and Griffin (2014).
To conclude the real data analysis, we evaluate the out-of-sample prediction
accuracy of our methodology. The latter strongly depends on the correct
identification of the sparse structure. We test our method against some
alternatives: a model with only a time-varying intercept (TVI), an au-
toregression of order 4 (AR) and its time-varying parameter counterpart
(TVP-AR), the EMVS (Ročková and George, 2014) and the VBDVS (Koop
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FIGURE 3. Dyanmic sparse estimate of regression coefficients βj,t with HPD 95%
intervals (left) and inclusion probabilities γj,t across time (right).

and Korobilis, 2020). We start with the first half of the sample as initial
estimation period and we forecast one step ahead. Then, we expand it by
adding the new observation and we repeat this procedure until the full
sample is used for the estimation of the model. We measure forecast accu-
racy using the root mean squared error (RMSE), the mean absolute error
(MAE) and the average log-predictive likelihood (ALPL). Table 3 shows
the out-of-sample results. BGTVP outperforms other methods in terms of
point estimates and it also shows good performances in terms of density
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forecasting.

Measure TVI AR TVP-AR BGTVP EMVS VBDVS
RMSE 0.238 0.229 0.244 0.223 0.287 0.262
MAE 0.172 0.165 0.177 0.158 0.230 0.193
ALPL -0.040 0.124 0.052 0.058 -0.395 -0.126

TABLE 1. Forecast accuracy. Best model according to each measure is high-
lighted.

4 Conclusion

In this paper we propose a Bayesian approach to dynamic sparsity in time-
varying parameter regression with stochastic volatility. An important fea-
ture of the model specification is the time dependence structure among the
logit of the inclusion probabilities, which is induced assuming a Gaussian
Markow random field for the joint vector of the latent states. The inference
is carried out within a Variational Bayes paradigm, which has the advan-
tage of give rise to a fast algorithm, suitable for dealing with regressions
having a large number of predictors. Our methodology is proved to out-
perform some established competitors both in a simulation study and in a
real data forecasting application.
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1 Motivation

Consider the i-th observation of a bivariate response vector (y1i, y2i), with
i = 1, . . . , n. This response is comprised of a binary outcome y1i ∈ {0, 1}
and a continuous, right-censored survival time y2i ∈ R+ with censoring
indicator δi = 1(y2i ≤ Ci), where Ci denotes the (random, non-informative)
censoring time and 1 denotes the indicator function. We propose a bivariate
regression model that accommodates a piecewise-exponential model (PEM)
of the survival margin, as well as a non-survival response. The proposed
approach allows for simultaneous modelling of very flexible hazard rates as
well as an additive model of a binary response. Such a bivariate model is
not possible without the modifications developed here due to the following
issue: Consider the right-censored survival marginal response. In the PEM
approach, the log-likelihood function of the survival model coincides with
the Poisson log-likelihood (with given offset, see, e.g., Bender et al., 2018).
The follow-up time is partitioned into J intervals (κj−1, κj ], where κ0 <
· · · < κj are cut points. Thus, the baseline hazard rate is assumed to be
constant within each interval. In order to fit a PEM, the original dataset

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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needs to be suitably augmented. Consider two hypothetical observations
with survival times t1 = 0.5 (censored) and t2 = 2.7 (not censored) as well
as cut points at κ0 = 0, κ1 = 1.5 and κ2 = 3 (i.e. J = 2 intervals).

TABLE 1. Comparison of non-augmented and augmented data for a PEM.

original data

i ti δi xi

1 0.5 0 x1

2 2.7 1 x2

=⇒

augmented data

i j δij tij log(tij) xij

1 1 0 0.5 log(0.5) x11

2 1 0 1.5 log(1.5) x21

2 2 1 1.2 log(1.2) x22

The data augmentation for a PEM is exemplified in Table 1 for the two
hypothetical observations i = 1, 2, where the index j denotes the j-th
discrete time interval. The new binary indicator δij is equal to 1 if the
observation i is not censored in time interval j and 0 if it is censored. As
shown in Table 1, the augmented data for a PEM consists now of n′ rows
instead of the original n rows, since the data entry for observation i now
consists of j = 1, . . . , j(i) entries, depending on the discrete time intervals
and the i-th subject’s survival time, with j(i) denoting the index of the
event or censoring time interval, i.e. for which ti ∈ (κj(i)−1, κj(i)]. If there
are p2 covariates in the model of the survival margin (PEM), the hazard
rate ϑ2ij for observation i in interval j is written as

log(ϑ2ij) = η2ij = β0 + s0(t)︸ ︷︷ ︸
log-baseline hazard

+

p2∑
r=1

sr(t,xi) + oij ∀t ∈ (κj−1, κj ],

where the term oij = log(tij) is a given offset. The functions sr(·) are
some smooth functions of the covariates that can be compactly written as
a combination of a design matrix and a vector of regression coefficients,
e.g. η2ij = x⊤

2ijβ2. The index “2” in the hazard rate and linear predictor
denotes that the survival response is the second marginal response of the
bivariate model. The data augmentation for the PEM results in a design
matrix X2 of dimensions (n′ × p2) with n′ > n. In case of the model for
the binary marginal response y1i, the dataset is left un-augmented and its
linear predictor is given by η1i = x⊤

1iβ1. Assuming there are p1 covariates,
the design matrix X1 is of dimensions (n × p1). A bivariate regression
model using both augmented and un-augmented data cannot be directly
specified due to the mismatch in the dimensions of the binary and piecewise-
exponential margins, i.e. n′ > n. In the following, we derive a cumulative
distribution function (CDF) based on the PEM such that both margins are
conform and a bivariate model with the aforementioned specifications can
be fitted.

98



Briseño Sanchez et al.

2 Methodology

Assume δij ∈ {0, 1} ∼ Poisson(ϑij) and denote the sequence of
j(i) independent censoring indicators of the i-th observation by δi =
(δi1, . . . , δij(i))

⊤. Given these assumptions, the joint density of δi turns
out to be:

f2(δi) =

j(i)∏
j=1

ϑ
δij
ij exp(−ϑij)

δij !︸ ︷︷ ︸
δij∼Poisson(ϑij)

=



exp

−
j(i)∑
j=1

ϑij


︸ ︷︷ ︸

=:f2(δi=0)

, if δij(i) = 0,

exp

−
j(i)∑
j=1

ϑij

ϑij(i)︸ ︷︷ ︸
=:f2(δi=1)

, if δij(i) = 1.

(1)

The CDF is F2(δi = 0) = f2 (δi = 0) and F2(δi = 1) = f2 (δi = 0) +
f2 (δi = 1). The index “2” once again denotes that the PEM is the sec-
ond marginal response. Equation (1) summarises the information of the
augmented data, turning j(i) entries per subject i into a single data en-
try. Hence, a likelihood function, which is based on the bivariate density
presented in Marra et al. (2020),

Li (β|y1i, δi) =

[
C
(
F1(0), F2(δi)

)
− C

(
F1(0), F2(δi)− f2(δi)

)]1−y1i

·[
f2(δi)− C

(
F1(0), F2(δi)

)
+ C

(
F1(0), F2(δi)− f2(δi)

)]y1i

,

can be computed, where C (F1(·), F2(·)) is a parametric copula evaluated
at the respective marginal CDFs of y1i and δi, as well as a dependence
parameter ϑ3i. The bivariate density in the likelihood function Li (·) de-
pends on the vector of unknown regression coefficients β = (β1,β2,β3)

⊤

and thus on the distribution parameters ϑi = (ϑ1i, ϑ2ij , ϑ3i)
⊤, which are

specified using the Generalized Additive Model for Location, Scale and
Shape (GAMLSS; Stasinopoulos et al., 2018) framework. Generally, the bi-
variate response is assumed to be a draw from a parametric distribution
made up of k = 1, . . . ,K parameters ϑki, i.e. (y1i, y2i) ∼ f12 (y1i, y2i|ϑi).
Given a vector xi of r = 1, . . . , p covariates, each parameter is modelled by
combining a structured additive predictor ηki and a link function gk(·):

ϑki = g−1
k (ηki) ⇔ gk(ϑki) = ηki = βk0 +

∑
r∈Lk

skr(xir) ,
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here Lr ⊆ {1, . . . , p} indicating that each parameter can be modelled using
different subsets of covariates. The smooth functions skr(·) feature different
specifications to accommodate e.g. linear, non-linear or spatial functional
forms of the regressors. Similarly to the predictor of the hazard rate, these
smooth functions can be written as a combination of a design matrix and
a vector of coefficients, i.e. η1i = x⊤

1iβ1 and η3i = x⊤
3iβ3. In the present

case K = 3, and the distribution parameters are obtained using the respec-
tive inverse link functions, namely: ϑ1i = g−1

1 (η1i), ϑ2ij = exp(η2ij), and
ϑ3i = g−1

3 (η3i). While typically logit and probit functions are used for g1(·),
the link g3(·) depends on the chosen parametric copula. This means that
it is also possible to specify a flexible additive model for the copula depen-
dence parameter. The link employed for the PEM is the natural logarithm.
The data augmentation required for the PEM in the survival margin also
produces a dimension mismatch in the remaining components required for
optimisation of the log-likelihood function ℓi(·), i.e. score vector and infor-
mation matrix. These issues are also addressed within this work in order to
carry out estimation via trust-regions or other optimisation methods based
on first and second order derivatives of the objective function. For instance,
let the score vector that contains the first order partial derivatives of the
log-likelihood w.r.t. the coefficient vectors be defined as:

si(β) =

(
∂ℓi(β)

∂β1

,
∂ℓi(β)

∂β2

,
∂ℓi(β)

∂β3

)
.

The second entry in the score requires the first order partial derivatives
of the previously defined PDF and CDF of the survival margin w.r.t. the
coefficient vector β2. Recall that ϑ2ij = g−1

2 (η2ij) = exp
(
x⊤
2ijβ2

)
, then:

∂f2(δi = 0)

∂β2
= − exp

−
j(i)∑
j=1

exp(x⊤
2ijβ2)

 ·
j(i)∑
j=1

[
exp(x⊤

2ijβ2)x2ij

]
,

∂f2(δi = 1)

∂β2
= exp

−
j(i)∑
j=1

[
exp(x⊤

2ijβ2)
]
+ x⊤

2ij(i)β2

 ·

− j(i)∑
j=1

[
exp(x⊤

2ijβ2)x2ij

]
+ x2ij(i)

 .

The partial derivatives of the second marginal CDF are equal to:

∂F2(δi = 0)

∂β2

=
∂f2(δi = 0)

∂β2

,

∂F2(δi = 1)

∂β2

=
∂f2(δi = 0)

∂β2

+
∂f2(δi = 1)

∂β2

.
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The matrix of second partial derivatives w.r.t. the unknown coefficient vec-
tors is defined as:

Hi(β) =



∂2ℓi(β)

∂β1∂β
⊤
1

∂2ℓi(β)

∂β1∂β
⊤
2

∂2ℓi(β)

∂β1∂β
⊤
3

∂2ℓi(β)

∂β2∂β
⊤
1

∂2ℓi(β)

∂β2∂β
⊤
2

∂2ℓi(β)

∂β2∂β
⊤
3

∂2ℓi(β)

∂β3∂β
⊤
1

∂2ℓi(β)

∂β3∂β
⊤
2

∂2ℓi(β)

∂β3∂β
⊤
3


For the blocks of the Hessian that correspond to the vector β2, the previous
first order partial derivatives, as well as the following second order partial
derivatives are used:

∂2f2(δi = 0)

∂β2∂β
⊤
2

=

j(i)∑
j=1

[
exp(x⊤

2ijβ2)x2ij

]
· exp

−
j(i)∑
j=1

exp(x⊤
2ijβ2)

 ·

j(i)∑
j=1

[
exp(x⊤

2ijβ2)x
⊤
2ij

]
−

exp

−
j(i)∑
j=1

exp(x⊤
2ijβ2)

 ·
j(i)∑
j=1

[
exp(x⊤

2ijβ2)x2ijx
⊤
2ij

]
,

∂2f2(δi = 1)

∂β2∂β
⊤
2

=

− j(i)∑
j=1

[
exp(x⊤

2ijβ2)x2ij

]
+ x2ij(i)

 ·

exp

−
j(i)∑
j=1

[
exp(x⊤

2ijβ2)
]
+ x⊤

2ji(i)β2

 ·

− j(i)∑
j=1

[
exp(x⊤

2ijβ2)x
⊤
2ij

]
+ x⊤

2ji(i)

+

exp

−
j(i)∑
j=1

[
exp(x⊤

2ijβ2)
]
+ x⊤

2ji(i)β2

 ·

− j(i)∑
j=1

[
exp(x⊤

2ijβ2)x2ijx
⊤
2ij

] .

The second order partial derivatives of F2(·) w.r.t. β2 are obtained in the
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same fashion as the first order partial derivatives, i.e.

∂2F2(δi = 0)

∂β2∂β
⊤
2

=
∂2f2(δi = 0)

∂β2∂β
⊤
2

,

∂2f2(δi = 1)

∂β2∂β
⊤
2

=
∂2f2(δi = 0)

∂β2∂β
⊤
2

+
∂2f2(δi = 1)

∂β2∂β
⊤
2

.

The corresponding information matrix for observation i is then given by
−Hi(β). It should be noted that the mismatches in dimensions between the
second PEM margin and the first margin as well as the model of the copula
dependence parameter (i.e. ϑ3i = g−1

3 (x⊤
3iβ3)) are addressed by summing

up the individual j = 1, . . . , j(i) “sub-contributions” of the PEM margin
(i.e. sub-contributions of both the score vector and the information matrix).

3 Discussion

To the best of our knowledge, so far there exist no alternatives to the pro-
posed modelling approach. This means that it is not possible to combine
the augmented dataset for the very flexible piecewise-exponential model
with the un-augmented dataset for the second margin (in this case, bi-
nary) as well as an additive model of the (potential) dependence between
both marginal responses. The developments presented here should allow for
modelling of a survival-survival outcome with both margins as a piecewise-
exponential model with (possibly) different number of discrete time in-
tervals in each margin. Implementing other combinations for the response
vector such as continuous-survival, discrete-survival, or categorical-survival
should be straightforward as well. The aforementioned cases are left as an
open research area for future developments.

References

Bender, A., Groll, A., and Scheipl, F. (2018). A generalized additive mo-
del approach to time-to-event analysis. Statistical Modelling, 18 (3-
4), 299 – 321.

Marra, G., Radice, R., and Zimmer, D. (2020). Estimating the binary en-
dogenous effect of insurance on doctor visits by copula-based regres-
sion additive models. Journal of the Royal Statistical Society, Series
C, 69 (4), 953 – 971.

Stasinopoulos, M. D., Rigby, R. A., and Bastiani, F. D. (2018).
GAMLSS: a distributional regression approach. Statistical Modelling,
18 (3-4), 248 – 273.

102



Locating γ-Ray Sources on the Celestial
Sphere via Mixture Models

Silvia Brosolo1, Alessandra R. Brazzale1, Giovanna Menardi1

1 Department of Statistical Sciences, University of Padova, Italy

E-mail for correspondence: menardi@stat.unipd.it

Abstract: Searching for as yet undetected γ-ray sources is a major target of the
Fermi LAT Collaboration. In this paper, we explore the capability of a filtering
method based on robust mixtures of von Mises–Fisher distributions with the ad-
ditional inclusion of concomitant variables. The proposed procedure is illustrated
on data drawn from a Fermi LAT catalogue of detected sources.

Keywords: Astrostatistics; Finite mixture models; von Mises-Fisher distribution

1 Background and Motivation

In γ-ray astronomy, the data typically consist of an event list which gives
the direction in the sky of each detected photon together with additional
information. If the distance to the emitting source is not relevant, the data
points are placed on the celestial sphere with Earth at its center and unit
radius, as shown in the left panel of Figure 1. Directions are often expressed
in galactic coordinates, which place the origin of the Cartesian system in
the center of our galaxy — the Milky Way — and align the x-axis with the
galactic plane (right panel of Figure 1). To overcome mismatches due to
projecting data onto the 2-dimensional sky map, we rather express direc-
tions through polar coordinates, that is, co-latitude (θ) and longitude (ϕ)
in geographical terms, which can easily be back-transformed to Cartesian
coordinates y = (cos θ, sin θ cosϕ, sin θ sinϕ)⊤ on the unit sphere.
Discovering and locating high-energy emitting sources in the whole sky map
is a declared target of the Fermi Gamma-ray Space Telescope collaboration.
An astronomical source is an object in outer space which, in our case,
emits γ-ray photons, that is, quanta of light in the highest energy range.
Traditionally, analyses are based on so-called single-source models (Hobson
et al, 2009, § 7.4) , which require the whole sky map to be split into small
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FIGURE 1. Fermi-LAT γ-ray source maps for a 5-year observation period in
Galactic (left) and polar (right) coordinates. In yellow, the analysed region.

regions. The presence of a possible new source is assessed on a pixel-by-
pixel basis using Poisson regression and likelihood ratio testing. Conversely,
variable-source-number models address the problem from a more global
perspective, as they simultaneously model and locate all sources in a sky
map (Hobson et al, 2009, § 7.3).
In this paper, we address the problem of identifying γ-ray sources from the
global perspective of variable-source-number models while working on the
sphere. Sources will be represented by highly concentrated clusters, each
modelled as a mixture of von Mises-Fisher distributions, with the further
flexibility of introducing robustness as well as additional information on
the photons, as provided by some concomitant factors. The methodological
background is reviewed in Section 2 and illustrated through a case-study
of Fermi LAT data in Section 3.

2 Modelling photon directions

In our setting, photon directions in R3 are represented as unit vectors y,
that is, as points on the sphere Ω2 = {y ∈ R3 : ||y||2 = 1} with unit radius
and centre at the origin. Since sources are known to present themselves as
spatially concentrated photon emissions, a natural model to address their
identification, by accounting for their directional nature, mixes a number
of von Mises–Fisher (vMF) densities:

p(y) =
J∑

j=1

αjpj(y) =
J∑

j=1

αjc3(κj)e
κjµ

⊤
j y (1)

with αj > 0 and
∑

j αj = 1. Here, the parameters µj are directly linked
to the mean directions of the emitting sources and have unit norm; κj > 0
are concentration parameters which (inversely) characterise how widely the
photon emission spreads around the mean direction of the sources, and c3(·)
are normalising constants which depend on the modified Bessel function of
the first type.
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FIGURE 2. Leptokurtik marginal distributions of Galactic coordinates of pho-
tons emitted by a single source (left) and associated scatterplot highlighting that
higher energy photons are concentrated around the center of the source

While specification (1) has proved a rather satisfactory fitting (Costantin
et al. 2020), here, we consider to extend its flexibility to better account
for data specificities. On one side, to reflect a mostly leptokurtic shape
(Figure 2, left), the density of each source emission j is itself modelled by
a mixture of two vMF distributions with the same location but different
concentration, i.e.

pj(y) = λjc3(κj)e
κjµ

⊤
j y + (1− λj)c3(ηjκj)e

ηjκjµ
⊤
j y, (2)

0 < λj < 1 and ηj > 0. As highlighted by Farcomeni and Punzo (2020) for
the Euclidean normal setting, the specification of a contaminated distribu-
tion to model each cluster provides robustness with respect to mild outliers
thanks to the induced inflated spread of one component. Identifiability is
guaranteed by the specification of the same location parameter for both
mixture components. The choice is also consistent with the so-called point
spread function, which describes the response of the LAT to a point source
as a function of its energy and the geometry of the detector and is modelled
by a mixture of t distributions (Ackermann et al, 2013).
In addition, the availability of supplementary information on photon emis-
sion, such as the associated energy and the quality of the event reconstruc-
tion, allows us to consider its inclusion to strengthen the discrimination
of the putative sources (Fig. 2, right). Denoted by x = (1, x1, . . . , xp) the
vector of concomitant factors, the mixing proportions are hence modelled
as

αj = α(x;ωj) =
expx⊤ωj∑J

j=1 (expx
⊤ωj)

, λj = λ(x; γj) =
expx⊤γj

(1 + expx⊤γj)
. (3)

A suitable adjustment of the Expectation Maximisation algorithm allows
us to recover the maximum likelihood estimates of the parameters, while
setting the number J of mixture components can be suitably addressed by
model selection criteria such as the BIC.
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TABLE 1. Model validation with respect to known true sources: ARI, TPR, FPR
and weighted average distance between the true and the closest detected source.

Model (1) Model (2) Model (3)
ARI 0.555 0.821 0.838
TPR 0.774 0.774 0.806
FPR 0.226 0.226 0.194

d(µ, µ̂) 0.105 0.068 0.209

3 Application to Fermi LAT data

The yellow region in Figure 1 shows a portion of the Northern sky of size
(l, b) ∈ [90◦, 120◦]× [10◦, 40◦]. The observations are drawn from the avail-
able 3FHL LAT catalogue and provide information on 31 earlier detected
sources in the area. Table 1 shows the results obtained by fitting a simple
mixture model (1), a mixture of mixtures model (2), and a mixture of mix-
tures models with additional information provided by the energy emitted
by each photon and the quality of event reconstruction as specified in (3).
With respect to the baseline specification, the robust alternative allows for
a remarkable improvement of accuracy, both with respect to the detected
source location (measured by the weighted angular distance from the true
sources), and with respect to the ability of the fitted models to associate the
events to the pertaining detected source (measured by the Adjusted Rand
Index, ARI). The proportion of true sources correctly detected (TPR) and
the proportion of estimated components which are not associated with a
source (FPR) remain unchanged. Including the concomitant variables aids
a marginal refinement of the event classification and source detection, yet
at the expense of a worsened accuracy of the source location estimate.
Overall, the promising results suggest further space for improvement, to
be addressed by a more flexible inclusion of the additional information,
possibly related to the source location rather than the mixing proportions.
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Abstract: We model the repeat/near repeat victimisation phenomenon, a theory
often used in crime modelling, as a spatiotemporal point process. Furthermore,
we assume spatial anisotropy to provide a more realistic treatment of the spa-
tial domain. We apply this to a model of residential burglaries in the city of
Hamilton, New Zealand. Model fitting and inference is provided using integrated
nested Laplace approximations with the stochastic partial differential equations
approach (INLA-SPDE). This not only provides a computationally efficient ap-
proach as opposed to other Bayesian methods, but also gives a more spatially
continuous and anisotropic treatment of the spatial domain.
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1 Introduction

Understanding space and time patterns of crime is key for accurate pre-
diction and forecasting of crime, providing police with good information to
implement effective crime prevention strategies. Certain types of crime ex-
hibit strong space and time dependencies such as residential burglaries and
car theft. The theory of repeat/near repeat victimisation (Townsley et al.,
(2003)) which states that the likelihood of a location experiencing a crime is
dependent on recent occurrences of crime at that location or within a given
neighbourhood, encompasses the idea that both space and time dependen-
cies exist. However, applying this theory in a real-world setting as is may
not be a good assumption to make. Spatial dependencies (or correlations)

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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over a domain are generally anisotropic, meaning that spatial correlations
do not extend in all directions in the same way. Spatial features such as a
river or a major transport corridor, could block spatial correlations from
extending to the other side of the feature. Though spatial anisotropy is a
more realistic assumption to make, it is not generally considered in spatial
modelling of crimes. In this short manuscript we introduce a model of res-
idential burglaries that incorporates an anisotropic version of repeat/near
repeat victimisation.

2 Methodology

2.1 Log-Gaussian Cox Processes

Consider the instances of residential burglaries in a spatiotemporal domain
D as the realisation of a spatiotemporal point process, a random collection
of observations having a spatial coordinate s = (x, y) and a time point t
where

Y (s, t) ≡
{
y(s, t), (s, t) ∈ D ⊂ R2 × R

}
. (1)

We model this point process using an intensity function λ(s, t), which is
a measure of the average number of observations per unit of space within
a specific time interval. Given a bounded region D defined in (1), a point
process model is an inhomogenous Poisson process where the number of
points in a region and time interval is Poisson distributed with mean
Λ(s, t) =

∫
D
λ(s, t)dsdt. The likelihood of an inhomogenous point process

Y given an intensity function λ can be expressed as

π(Y |λ) = exp

{
|D| −

∫
D

λ(s, t)dsdt

} ∏
si,t∈Y

λ(si, t). (2)

Note that the likelihood is usually intractable as the integrand inside (2)
cannot typically be calculated explicitly. In practical terms, we model the
intensity as a log-Gaussian Cox process (LGCP), which models the log
intensity as a realisation of a Gaussian random field Z(s, t). This can be
framed as a Bayesian hierarchical model, and is a latent Gaussian model
if we assume a multivariate Gaussian prior for the random field. Assuming
the Gaussian random field can be approximated with a Gaussian Markov
random field, the model fits inside the INLA modelling framework for fast
Bayesian inference (Rue et al., (2009)).

2.2 Non-stationary SPDE Approach

The stochastic partial differential equation (SPDE) approach to spatial
and spatiotemporal modelling (Lindgren et al., (2011)) was developed as a
way of representing a continuous spatial process with a discretely indexed
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spatial stochastic process. It also turns out to be a more computationally
efficient method as opposed to a fine grid discretisation of the spatial do-
main (Simpson et al., 2016). We use the non-stationary SPDE approach
which allows us to define geographic features in the spatiotemporal domain
that acts as barriers to spatial correlation (called the “barrier model”). The
barrier model uses a spatially varying linear fractional SPDE

(κ(s)2 −∆)α/2(τ(s)Z(s)) = W(s), (3)

where κ and τ are scale and precision parameters respectively and vary
at different locations, α is the smoothness parameter, ∆ is the Laplacian
and W(s) is Gaussian spatial white noise. The solution to (3) is a non-
stationary Gaussian field with mean 0 and covariance given by the Matèrn
covariance function

Cov(Z(si), Z(sj)) =
σ2

Γ(ξ)2ξ−1
(κh)ξBξ(κh). (4)

In the above equation, σ2 is the marginal variance, h = ||si−sj || represents
the Euclidean distance between two spatial locations si and sj , and Bξ is
the modified Bessel function of the second kind with order ξ > 0. Rather
than treating the above as a correlation function of the shortest distance
between two points, the barrier model views it as a collection of paths
through a simultaneous autoregressive process, so that local dependencies
are manipulated in such a way as to cut off paths that cross geographic
barriers. For more information see Bakka et al., (2019).
In practice, the Gaussian field is approximated using a finite element mesh
using a basis function representation defined by a triangularisation of the
spatiotemporal domain. Details of the method can be found in Krainski et
al., (2019).

2.3 Dataset and Model

The dataset comprises of spatial locations of residential burglaries in Hamil-
ton, New Zealand, for two months (March and April) in 2017. The city
landscape is characterised by the Waikato River which runs through the
city and divides it in easern and western halves. Burglaries are geo-coded
as New Zealand transverse mercator coordinates (eastings and northings),
and times are split over eight weeks. The spatial domain considered is the
urban and suburban area of Hamilton City and we consider Waikato River
and Lake Rotoroa as geographic barriers. We also consider two covariates
related to residential burglaries. The measure of the socioeconomic condi-
tions of a given location is measured using the NZ socioeconomic depriva-
tion index (SDI, Atkinson et al., (2020)). The count of graffiti instances
within a 500 metre radius (Graf) of a location is used as a measure of
anti-social behaviour. The model is given by:

η̂i,t = β0 + β1SDIi,t + β2Grafi,t + f(si, t; r, rb = 0, σ, ρ),
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FIGURE 1. Spatial model maps of the eight weeks of data. Blue indicates a
low intensity whereas red indicates high intensity. Black points are the actual
observed locations of burglaries.

where β’s are the coefficients for the fixed effects (including the intercept),
and ηi,t is the Gaussian linear predictor, indexed at location i = 1, . . . , N at
time t = 1, . . . 8. Note thatN is the number of nodes in the spatial mesh and
number of observed residential burglaries. The function f is governed by
hyperparameters, and is a spatiotemporal function which is the Kronecker
product of the Matèrn covariance function with an autoregressive process
of order 1 (AR(1)). The use of an AR(1) process reflects that residential
burglaries this week are dependent mainly on the number of residential
burglaries that occurred last week, which is consistent with the temporal
aspect of the repeat/near repeat victimisation theory. The hyperparameters
include a spatial range parameter r, range parameter at the barriers rb = 0,
marginal standard deviation σ and time correlation ρ, all of which are given
penalised complexity priors with the following specifications

π(r) ∼ PC(1, 0.95),

π(ρ) ∼ PC(0.7, 0.5),

π(σ) ∼ PC(1, 0.01).

Note that the prior for the spatial correlation range r reads that P (r <
1km) = 0.95. The priors for ρ and σ read in reverse, so the prior for ρ reads
that P (ρ > 0.7) = 0.5, and similarly for σ. The priors for r and ρ are based
on results from the near-repeat calculator (Ratcliffe, (2020)). Once model
fitting is done, a 9th week is then predicted based on the spatial model of
the previous eight weeks.
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FIGURE 2. Hotspot maps with the predicted top 5% (left) and 10% (right) of
intensities.

3 Preliminary Results

The posterior means of the estimated intensities are projected onto the
spatial domain of the city and can be seen in Figure 1. Higher intensities
occurred in the south central and south east of the city. The hotspot maps
in Figure 2 show the prediction of the highest 5% and 10% of intensities.
We can see that higher intensities in the south central part of Hamilton
do not extend over the boundaries of the Waikato River. Both covariates
were significant in the Bayesian sense (credible intervals do not include
zero) and deviance information criterion outputs showed that this model
fit better than the model with no covariates.

4 Further Work

We have so far placed a lot of emphasis on modelling the spatial aspects
of burglaries. The model we have provides predictions that are continuous
and spatially anisotropic which can provide greater insights as to where
residential burglaries may take place. Further development and detail of
geographic barriers in the spatial field may yield further prediction gains.
However, the temporal aspects will also need further work for this model
to be usable from a preventative policing point of view. Predictions over
a finer time resolution would make the model far more usable, but would
greatly increase the model complexity. For example, if we believe that the
intensity of residential burglaries are dependent on what has happened in
the past week, we would need to fit an autoregressive model of order 7,
increasing the number of model hyperparameters and extinguishing any
computational advantages that INLA may bring. Also, data sparsity is
an issue as we make time resolutions finer. Clusters of burglaries become
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apparent over time, but are much harder to detect when only modelling
daily occurrence of burglaries.
Another temporal aspect that requires further work is that burglary data
is right-censored with respect to time. Burglaries typically occur when the
resident of the house is away, so the observed time is the time reported.
Aoristic analysis (Ratcliffe, (2000)) has been used in the past to help with
this problem, and is an idea we are looking at implementing in this model.

Acknowledgments: The author’s wish to thank the Waikato District Po-
lice for the residential burglaries dataset.
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1 Two approaches to quantile regression for counts

Quantile regression is a distribution-free method to analyse the relation-
ships between the quantiles of a response variable and a set of covariates.
Most theoretical developments refer to the case of a continuous response
variable. The extension of quantile regression to count data raises several
issues since the conditional quantile function of a discrete random variable
cannot be a continuous function of the regression parameters. The tradi-
tional approach, proposed by Machado and Santos Silva (2005), is based on
jittering : an artificial continuous variable Z is generated by adding a uni-
form random variable U to the original count variable Y . Then, the condi-
tional quantile regression function is specified as QZ(p|x) = p+exp(x′β(p))

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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and β(p) is estimated by linear quantile regression. To reduce the depen-
dence of the estimates on the sampled values of the uniform distribution,
the jittering procedure is repeated m times to get “average-jittering” esti-
mators which are proved to be consistent and asymptotically normal. The
jittering approach has been successfully applied in several settings, for ex-
ample the analysis of credits gained by university students (Grilli et al.,
2016).
A different route for applying quantile regression to count data is based on
the quantile regression coefficients modelling paradigm of Frumento and
Bottai (2016). The idea is to impose a parametric structure to the quantile
regression coefficient functions and to fit the parameters all in once, instead
of one quantile at a time. Specifically, the q regression parameters are de-
fined as β(p|θ) = θb(p), where b is a vector of k known functions of p that
are assumed to be continuous and differentiable, and θ is a q×k matrix. The
parameters in θ are estimated by minimising an integrated loss function.
Differently from standard quantile regression, the minimisation problem
can be tacked with conventional algorithms such as Newton–Raphson or
gradient search.
Frumento and Salvati (2021) propose to exploit quantile regression coef-
ficients modelling for the analysis of count data. Given that the uniform
random variable used for jittering has expectation 0.5, they apply the model
to a transformation T (·) of Y ◦ = Y + 0.5, that is

QT (Y ◦)(p|x,θ) = x′β(p|θ) = x′θb(p).

Two common choices for T (·) are the identity and the logarithm.
The regression coefficient modelling approach performs a smoothing that
facilitates the interpretation. In addition, it might increase the estima-
tion efficiency, as shown by the simulation study of Frumento and Salvati
(2021). However, selecting an appropriate parametric form for each of the
q coefficients is a difficult task because of the wide range of options and
the unavailability of the standard model selection procedures. Frumento
and Bottai (2016) propose a goodness-of-fit test which compares by the
Kolmogorov–Smirnov statistic the distribution of F (yi|xi,θ), i = 1, . . . , n,
with a Uniform distribution. This test is approximate in case of count data.

2 Comparing the two approaches: analysis of gained
credits by university students after online teaching

At the beginning of March 2020, to limit the spread of the COVID-19
epidemic, the Italian government forced the universities to adopt online
teaching. We aim at evaluating the impact of this decision on the produc-
tivity of students measured by the number of gained credits. Specifically,
we analyse data collected in the administrative records about first-year
students who enrolled in the Bachelor’s degree programs of Psychological
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Sciences and Industrial Design in the academic years 2018/19 and 2019/19
at the University of Florence. The two degree programs are different in
terms of disciplines and admission rules (Psychological Sciences admits
a fixed number of freshmen on the basis of a multiple choice test). The
idea is to compare the productivity of freshmen in the second semester of
2019/20, which is the one affected by online teaching, to that of first-year
students in the second semester of 2018/19, who received the usual frontal
lectures. Both cohorts attended regular lectures in the first semester, but
were exposed to different forms of teaching in the second one. In both aca-
demic years of interest the study plan remained the same. After excluding
students who got no credits in the first semester, the data set consist of
946 first-year students (649 for Psychological Sciences and 297 for Indus-
trial Design). Students’ productivity is measured by the number of gained
credits (ECTS). According to the study plan, students should obtain ap-
proximately 30 credits per semester. Since the number of credits is always
a multiple of 3, the response variable used in the models, denoted by Y ,
is defined as the number of credits gained in the second semester divided
by 3. The distribution of Y is quite irregular, thus quantile regression is an
appealing methodology. The following covariates are included in the model:
number of credits obtained during the first semester, centred around 15;
a dummy variable for cohort 2019 (online teaching) vs 2018 (in-presence
teaching); a dummy variable for male vs female; high school grade, centred
around 80 (it ranges from 60 to 100); six dummy variables for the type of
high school (baseline category: “Scientific”).
The analysis is performed separately for each degree course. The effect of
interest is the coefficient of the binary variable distinguishing the students
who experimented online teaching (cohort 2019) from the others (cohort
2018). We apply the two approaches to quantile regression for counts out-
lined in Section 1. In particular, for the jittering approach we specify the
model

QZ(p|x) = p+ x′β(p) = p+ β0(p) +
10∑
i=1

βi(p)xi,

whereas for quantile regression coefficients modelling we specify the model

QY ◦(p|x,θ) = x′β(p|θ) = β0(p|θ) +
10∑
i=1

βi(p|θ)xi.

To facilitate the comparison, in both approaches the transformation of the
working variable is the identity function. The first approach is implemented
through the function rq of the R package quantreg, while the second ap-
proach is carried out with the function iqr of the qrcm package.
For the coefficient modelling approach, we tried several parametric forms
for the coefficients βi(p|θ), compared on the basis of the number of free
model parameters, the integrated loss function and the p-values of the
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Kolmogorov–Smirnov (KS) test for goodness-of-fit. To limit the range of
alternative specifications, we decided to be very accurate only with two
coefficients: (i) the coefficient of the intercept, which serves as a baseline;
(ii) the coefficient of the binary variable distinguishing the students who
experimented online teaching from the others, which is the parameter of
main interest. Those coefficients have been modelled in a flexible way with
logarithmic transformations and polynomials. The other coefficients, which
play the role of controls, are approximated by simple functions like lines and
constants. Furthermore, the choice of the parametric functions is guided by
the comparison with the non-parametric patterns provided by the jittering
approach.
The results from quantile regression coefficients modelling show that, for
Psychological Sciences, the effect of online teaching is negative at most
quantiles, notably on the tails, namely for students with low or high pro-
ductivity; however the estimated effect is always small and not statistically
significantly at 5%. For freshmen in Industrial Design the effect is instead
positive, though it is small and almost never statistically significant.
As for the relative merits of the two approaches, we found that quantile
regression coefficients modelling yields smooth functions of the coefficients
with less variation than the point-wise estimates of the jittering approach,
especially in the tails. Indeed, a comparison of the standard error reveals
a greater efficiency of the first approach except for central quantiles. The
drawback lies in the complexity of model selection due to the wide range of
options and the lack of well-grounded selection procedures. In this regard,
the non-parametric jittering approach remains necessary in practice, as it
provides a reference for assessing the adequacy of the parametric functions.
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Abstract: We propose a Bayesian modeling framework for discrete ordinal and
count data based on conditional transformations of the responses. The condi-
tional transformation function is estimated from the data in conjunction with an
a priori chosen reference distribution. For count responses, the resulting transfor-
mation model is a Bayesian fully parametric yet distribution-free approach that
can additionally account for excess zeros with additive transformation function
specifications. For ordinal categoric responses, our cumulative link transforma-
tion model allows for the inclusion of linear and nonlinear covariate effects that
can additionally be made category-specific, resulting in (non-)proportional odds
or hazards models. Inference is conducted by a generic modular Markov chain
Monte Carlo algorithm where multivariate Gaussian priors enforce specific prop-
erties such as smoothness on the functional effects. To illustrate the versatility
of Bayesian discrete conditional transformation models, applications to counts
of patent citations in the presence of excess zeros and on treating forest health
categories in a discrete partial proportional odds model are presented.
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1 Introduction

Distributional regression models that overcome the traditional focus of re-
gression analyses on the conditional mean of the response distribution and
rather focus on the complete response distribution have seen considerable
interest in the past decade (see, e.g., Kneib et al. 2022 for an overview).
One particularly interesting special case of distributional regression are
conditional transformation models (CTMs, Hothorn et al. 2018), where the
cumulative distribution function (CDF) of the response Y given covariates
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2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).

117



Carlan and Kneib

poisson
sq

rt
(F

re
qu

en
cy

)

0 5 10 15

−
10

0
10

20
30

40

negbin

sq
rt

(F
re

qu
en

cy
)

0 5 10 15

0
10

20
30

40

bdctm

sq
rt

(F
re

qu
en

cy
)

0 5 10 15

0
10

20
30

40

FIGURE 1. Rootograms of the linear Poisson, the linear negative binomial and
the simple linear BDCTM model.

X = x is modelled as

FY |X=x(y|x) = P (Y ≤ y|x) = FZ(h(y|x))

with a pre-specified reference CDF FZ (e.g. the standard normal) and
a covariate-dependent bijective transformation function h(y|x) that has
to be estimated from the data. The resulting model is semiparametric in
the sense that a parametric specification for the transformation function
is considered while the overall setup allows to generate very flexible re-
sponse distributions. To make the model specification feasible, one typi-
cally assumes an additive composition of the transformation function as
h(y|x) =

∑J
j=1 hj(y|x), where hj(y|x) are response-covariate interactions

that are monotone in direction of y.
For continuous responses, the density implied by a CTM can be derived
via the transformation theorem for densities as

fY |X=x(y|x) = fZ(h(y|x))
∣∣∣∣∂h(y|x)∂y

∣∣∣∣
such that likelihood-based and Bayesian inference become available (see
Hothorn et al. 2018 and Carlan at al. 2020). In this paper, we introduce
extensions of CTMs for discrete responses within the Bayesian framework
and present two applications for count data and ordinal responses.

2 Count Transformation Models

For count responses, the basic idea of discrete CTMs is to truncate the
transformation via the floor operator ⌊y⌋ such that

FY |X=x(y|x) = FZ(h(⌊y⌋|x)).
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FIGURE 2. Comparison of quantile residuals obtained by BDCTM models with
and without addititional zero component with various generalized linear and
zero-inflated models.

While the transformation theorem for densities can no longer be applied in
this case, we can still derive the corresponding probability mass function
as

log(fZ(y|x)) =

{
log[FZ(h(y|x))] y = 0

log[FZ(h(y|x))− FZ(h(y − 1|x))] y = 1, 2, . . .

by evaluating the step heights of the CDF. To further increase the flexibility
of the model, we can also consider two component mixtures including an
explicit separate probability for zeros that is useful in the presence of excess
zeros.
As an illustration, we analyze the number of citations (ncit) for n = 4, 805
patents granted by the European Patent Office. The data set includes five
dummies and three continuous variables (grant year, the number of the
designated states, number of patent claims) as explanatory variables. A
high rate of zeros (≈ 46%) and a big spread ncit ∈ {0, . . . , 40} hint on the
presence of zero-inflation and overdispersion. The rootograms presented in
Figure 1 as well as additional inspections of quantile residuals in Figures 2
indicate that, even after adjusting for covariates, standard specifications
for count data are not necessarily flexible enough to capture these features
while the Bayesian discrete CTM offers a decent fit without requiring the
strong assumption of pre-specified response distribution.
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FIGURE 3. Median-sorted estimated random intercepts for tree location ID.

3 Cumulative Link Transformation Models

For ordinal responses, we consider models in the spirit of cumulative re-
gression models, yet with non-proportional specification such that

FY |X=x(yk|x) = FZ(hY (yk) + hk(x)),

where yk, k = 1, 2, . . . ,K are the labels for the ordered response cate-
gories, hY (yk) is a component of the transformation function independent
of covariates and hk(x) induces the non-proportionality by interacting the
response category with covariates. Partial proportional models result, when
some of the components hk(x) are restricted to be independent of the re-
sponse category, i.e. hk(x) ≡ h(x).
For cumulative link transformation models, we consider an analysis of
forest health, where the health status of trees is evaluated in three or-
dered defoliation grades (1 = no (0%), 2 = weak (12.5% − 37.5%) and
3 = severe (≥ 50%)). Among others, the dataset comes with the covari-
ate canopy density in percent, longitude and latitude of the tree location,
and tree location identification number. The goal of our analysis is to de-
termine the effect of the covariates on the degree of defoliation. For this,
we set up a partial proportional odds model where we assume nonlinear
category-specific shifts of canopy density, a transformation random effect
for the tree location groups and a spatial nonlinear effect on basis of a ten-
sor spline for the coordinates. Figures 3 and 4 shows the estimated random
intercepts and spatial effect, respectively.
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FIGURE 4. Estimated two-dimensional spatial effect with triangles indicating
observed tree locations (right).

4 Parameterisation and Inference

For all our models, we utilize (Bayesian) penalized splines and their tensor
product interactions with various other effect types (such as random effects
or spatial effects in the forest health example) to obtain flexible transfor-
mation functions while enabling regularization by appropriate smoothness
priors. Monotonicity along the response dimension is ensured by reparam-
eterizing the basis coefficients in a way that leads to a monotonically in-
creasing sequence (Pya and Wood, 2015). For Bayesian inference, we rely
on Markov chain Monte Carlo simulations implemented with the No-U-
turn sampler with dual averaging for efficient exploration of the posterior
distribution. Details are available in Carlan and Kneib (2022).
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Abstract: Competing risks models can involve more than one time scale. We
propose a model for competing events in which the cause-specific hazards vary
smoothly over two times scales. We estimate these two-dimensional hazard func-
tions by P-splines, exploiting the equivalence between hazard smoothing and
Poisson regression. As the data are arranged on a grid we can make use of gen-
eralized linear array models (GLAM) for efficient computations. We present an
application to the study of transitions out of non-marital cohabitation in Ger-
many.
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1 Introduction

Competing risks describe the situation where individuals are at risk of expe-
riencing one of several types of events (Putter et al., 2007). The prototype
of a competing risks model is the study of cause-specific mortality. For ex-
ample, in clinical studies of cancer it is common to analyse mortality from
cancer and mortality due to other causes. But competing events are also
present in demographic studies: A marriage can end either in divorce or in
widowhood, a non-marital cohabitation ends by marriage or separation.
Time is a key quantity in any event history analysis, and it can be recorded
over several time scales. For example, after a cancer diagnosis, the risk of
death might be studied over time since diagnosis, over age, which is time
since birth, or over time since treatment. In demography, age-specific rates
are the most common choice, but other time scales, like time since marriage,
are often relevant too. All time scales progress at the same speed and differ
only in their origin.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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The key quantities in a competing risks analysis are the cause-specific haz-
ards. They are defined as the instantaneous risk of experiencing an event
of a specific type at time t, given no event (of any type) has happened yet.
From them the overall survival function, i.e., the probability of no event
up to time t, and the cumulative incidence functions, the probability of an
event of given type before t, can be derived.
Usually, cause-specific hazards are defined for the same single time scale,
and little research has been done on how to handle multiple time scales in
competing risks models. Lee et al. (2017) propose a model where two com-
peting causes are modelled on two different time scales and then combined
under one of the two scales to estimate the cumulative incidence functions.
Carollo et al. (2022) propose a model for a single event where the hazard
varies smoothly over two time scales and is estimated by tensor products
P -splines. Here we develop this model further for a competing risks setting.
Each cause-specific hazard varies over two time scales, and estimation again
is achieved by bivariate P -splines smoothing. Therefrom, we calculate the
cumulative incidence functions for each cause.
As an application we study transitions out of cohabitation, either into mar-
riage or into separation, for women living in West Germany.

2 A competing risks model with two time scales

Consider individuals in non-marital cohabiting unions. At each point in
time a cohabiting individual is at risk of marrying (event 1) or of separat-
ing from the current partner (event 2). These transitions can be studied
along two time scales, namely t = age and s = duration of cohabitation. A
graphical depiction of this process in presented in Figure 1.
The cause-specific hazards for event type ℓ ∈ {1, 2} over the two time scales
t and s are defined as

λℓ(t, s) = lim
∆↓0

P (eventℓ ∈ {t+ k∆, s+ k∆ : 0 ≤ k ≤ 1}|no event before (t, s))

∆
.

Here t > s, so the two-dimensional hazards λℓ(t, s) are only defined in the
lower half-open triangle of R2

+.
The two time scales differ in their origin, which in this example is the age
t0 when the individual enters the cohabitation. This age differs between
individuals and in a Lexis diagram individuals move along 45◦-lines from
(t0, 0) to (t0+v, v) until they leave the risk set (due to event or censoring).
This allows to view cause-specific hazards equivalently as two-dimensional
functions λ̃ℓ(u, s), where λ̃ℓ(u = t−s, s) = λℓ(t, s). The λ̃ℓ(u, s) are defined
over the full positive quadrant R2

+.

From the cause-specific hazards λℓ(t, s) or λ̃ℓ(u, s), respectively, we obtain
the cumulated cause-specific hazards

Λℓ(t, s) =

∫ s

0

λℓ(t0 + v, v) dv or Λ̃ℓ(u, s) =

∫ s

0

λ̃ℓ(u, v) dv,
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FIGURE 1. Competing risks process for the transitions out of cohabitation by
age and duration of the cohabitation.

and the overall survival function

S(t, s) = exp

{
−

2∑
ℓ=1

Λℓ(t, s)

}
or S̃(u, s) = exp

{
−

2∑
ℓ=1

Λ̃ℓ(u, s)

}
,

where u = t− s. The cumulative incidence functions (CIF) are

Iℓ(t, s) =

∫ s

0

λℓ(t0 + v, v)S(t0 + v, v) dv ; Ĩℓ(u, s) =

∫ s

0

λ̃ℓ(u, v) S̃(u, v) dv.

In the context of our application, Ĩℓ(u, s) is the cumulative probability

of marriage (ℓ = 1) or separation (ℓ = 2) within s years after start of
cohabitation for a subject who entered cohabitation at age u.
To estimate the cause-specific hazard surfaces λ̃ℓ(u, s) we divide the (u, s)-
plane into J × K small bins (squares) and within each bin we count the

number of events of type ℓ, denoted by y
(ℓ)
jk , and the exposure times rjk.

The y
(ℓ)
jk are assumed to be realizations of Poisson variates with means

µ̃
(ℓ)
jk = rjk · λ̃(ℓ)

jk = rjk · exp{η̃(ℓ)jk }. (1)

The λ̃
(ℓ)
jk represent the cause-specific hazard λ̃ℓ(u, s) evaluated at the center

of bin (j, k).
The log-hazards η̃ℓ(u, s) are assumed to be smooth functions and they are
modelled as sums of tensor products of B-splines. Difference penalties on
the coefficients, one in the row- and one in the column-direction, ensure
smoothness of the estimates (Currie et al., 2004).

125



Carollo et al.

Due to the binning the data, event counts and at-risk times, are on a regular
grid and are naturally arranged as J ×K matrices

Yℓ = [y
(ℓ)
jk ] and R = [rjk].

Correspondingly, we denote Mℓ = [µ̃
(ℓ)
jk ] and Eℓ = [η̃

(ℓ)
jk ]. The tensor prod-

ucts are formed from two marginal B-splines bases of size m and m̆, re-
spectively, along the u- and s-axis. The two basis matrices are denoted by
B, which is J×m, and by B̆, which is K×m̆. The coefficients are arranged

in the matrix Aℓ = [α
(ℓ)
fg ], where f = 1, . . . ,m and g = 1, . . . , m̆.

The log-hazard can then be expressed in a compact way as Eℓ = B ·Aℓ ·B̆T.
The penalty on the coefficients in Aℓ is constructed from two matrices D
and D̆ that form differences (of order d) of the columns of a matrix and
it is controlled by two smoothing parameters ρ and ρ̆ to allow anisotropic
smoothing:

pen(ρ, ρ̆) = ρ ||DAℓ||2F + ρ̆ ||AℓD̆
T||2F

(||.||2F represents the sum of all squared elements of a matrix.)
The objective function to minimize resulting from (1) is

Qℓ = dev(Mℓ;Yℓ) + pen(ρ, ρ̆)

= 2
J∑

j=1

K∑
k=1

(
y
(ℓ)
jk ln(y

(ℓ)
jk /µ̃

(ℓ)
jk )− (y

(ℓ)
jk − µ̃

(ℓ)
jk )

)
+ pen(ρ, ρ̆)

which leads to normal equations that can be solved, for given ρ and ρ̆, in
a penalized Poisson IWLS scheme (in compact notation):[

(B̆ ⊗B)TW ′
ℓ(B̆ ⊗B) + P

]
α′
ℓ = (B̆ ⊗B)TW ′

ℓz
′
ℓ.

Here, P = ρ(Ĭ ⊗ DTD) + ρ̆(D̆TD̆ ⊗ I), with I and Ĭ identity matrices of
appropriate dimension, Wℓ is a diagonal matrix of weights, αℓ is the vector
of coefficients, zℓ is the working variable and the prime symbol indicates
the current value in the iteration.
The special format of Yℓ, R and Eℓ allows to employ generalized linear array
methods (Currie et al., 2006) for efficient computations. We determine the
optimal values for the smoothing parameters by numerically optimizing the
AIC of the model as a function of (ρ, ρ̆).

Once the coefficients Âℓ = [α̂
(ℓ)
fg ] are obtained, we can evaluate the es-

timated η̃ℓ(u, s) and hence also the cause-specific hazards λ̃ℓ(u, s) on a
detailed grid. Consequently, the cumulative hazards Λ̃ℓ(u, s), the overall
survival function S̃(u, s) and the CIF Ĩℓ(u, s) can be obtained by simple
numerical integration (rectangle or trapezoid rule) with sufficient accuracy.
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3 Application: transitions out of cohabitation

We applied this approach to study transitions out of cohabitation, either to
marriage or to separation, for West German women over age and length of
the cohabitation. The data come from the 11th wave of the German Family
Panel (pairfam). The pairfam is a longitudinal panel study for researching
issues of family and relationships dynamics in Germany (Huinink et al.,
2011).
For this application we selected all women living in West Germany who at
the time of their first interview were already in a non-marital cohabiting
union, or have entered one at some time during the study period (2008-
2019). We follow the trajectories of these cohabiting unions from either the
start of the cohabitation, or the time of the first interview, until marriage,
separation or end of the follow-up period. For each individual in the sample
we know the age at beginning of the cohabitation, the age at the event or
censoring time, and the duration of the cohabitation (which is left truncated
if the cohabiting union was already formed by the time the individual
entered the study).
We first estimate the cause-specific hazards along age and duration of the
cohabitation for West German women by dividing the transformed positive
quadrant into a grid of 62 by 54 bins. Then, we compute the cubic marginal
B-splines by placing a knot every 3 bins circa, resulting in 20 and 17 B-
splines on the u and s axis respectively.
The cause-specific hazards estimated from the data, given the optimal
smoothing parameters, are represented in the transformed positive quad-
rant in Figure 2.
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FIGURE 2. Cause-specific hazards of marriage (left panel) and separation (right
panel) by age at entry into cohabitation and duration of cohabitation.

From these, we calculated the estimated cumulative incidence functions,
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shown in Figure 3.
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FIGURE 3. Cumulative incidence functions of marriage (left panel) and separa-
tion (right panel) by age at entry into cohabitation and duration of cohabitation.
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Abstract: For longitudinal categorical data, we propose a hidden Markov model
with a bivariate latent Markov chain that jointly models an unobservable trait
of interest and a binary indicator representing a interviewee’s response style over
time. The novelty consists of modelling the substantive latent trait, taking si-
multaneously under account the underlying responding behavior and its evolu-
tion over time. Alternative existing approaches either ignore the respondents’
responding behavior or consider it as a continuous time-invariant latent trait.

Keywords: Response style; Stereotype model; Model selection

1 Motivation and Models

Opinions, behaviors and perceptions are generally subjective indicators of
non-directly measurable variables and are usually collected through Likert-
type items.
The categories selected by responders may not represent their true prefer-
ences but their tendency to use only a certain rating scale options, governed
by an underlying behavioral attitude, known as Response Style (RS ) (e.g.,
Van Vaerenbergh and Thomas, 2013). If ignored, RS distorts the latent
trait measurement and induces bias in the estimates of parameters.
The interest here is on the longitudinal perspective where responses, cate-
gorical indicators of a latent trait of interest at several time occasions, can
be driven or not by RS and the RS attitude can vary dynamically, allowing
also dependence on individual characteristics.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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The methodological proposal is an extension of a hidden Markov model
(HMM) by Bartolucci et al, 2012, with a bivariate latent Markov chain
that jointly models an unobservable trait of interest and an unobservable
binary indicator of the respondent’s form of answering (RS driven or not,
i.e., RS or RS) over time.
Consider r ordinal responses observed on n units at T time occasions. In
particular, let Yjit, Yjit ∈ Cj = {1, . . . , cj}, denote the j-th ordinal response
variable, j ∈ R = {1, . . . , r}, of the i-th unit, i ∈ I = {1, . . . , n}, at the
t-th occasion, t ∈ T = {1, . . . , T}. The responses are assumed to reflect
the levels of unobservable latent constructs Lit, i ∈ I, t ∈ T , with finite
discrete state space SL = {1, . . . , k}. Furthermore, they can be observed
under two latent regimes: RS or RS that are captured by binary latent
variables Uit, i ∈ I, t ∈ T , with state space SU = {1, 2}, where 1 and 2
denote the RS and RS states, respectively.
The proposal is a HMM defined by two components that describe the
Markov chain of the latent variables and the conditional distributions of the
responses given the latent variables. Covariates xit and zit, t ∈ {2, . . . , T}
may influence the transition probabilities of the latent variables Uit and
Lit for the i-th unit, respectively. They are assumed to affect only the dis-
tribution of the latent variables. In our view, in fact, the covariate effect is
captured by the latent constructs Lit which are indirectly observed trough
the responses Yjit.
The assumptions allowing the transition probabilities of the bivariate

Markov chain {Lit, Uit}t∈T to be πit(u, l|ū, l̄) = π
U |L
it (u|l, ū)πL

it(l|l̄), t =
2, . . . , T, are illustrated in Figure 1.

Li1 Li2

Ui2

……… LiT

UiT………

Yi11 Yi21 YiJ1… Yi12 Yi22 YiJ2… Yi1T Yi2T YiJT…

Zi1 Zi2 ZiT

Xi1 Xi2 XiT

Ui1

Latent trait

Responding behavior

covariates

Observed responses

A Hidden Markov Model for Longitudinal Data with Dynamic Response Style

FIGURE 1. HMM with an RS component
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Let us describe the models for π
U |L
it (u|l, ū) and πL

it(l|l̄), and for the obser-
vation probability functions, under the two regimes RS and RS.

Latent model.

A stereotype logit model is adopted for the latent trait transition proba-
bilities:

log
πL
it(l|l̄)

πL
it(l̄|l̄)

= β0ll̄ + νll̄β
′
1l̄zit, l ̸= l̄, l, l̄ ∈ SL, t = 2, . . . , T.

For l̄ ̸= 1, ν1l̄ = 1, for l̄ = 1, ν2l̄ = 1, while the rest of the ν-scores are to
be estimated. A logit model is considered for the conditional RS transition
probabilities for each possible RS state ū of the previous occasion and for
each current state l of the latent construct:

log
π
U |L
it (2|l, ū)

π
U |L
it (1|l, ū)

= β̄0lū + β̄
′
1lūxit, l ∈ SL, ū ∈ SU , t = 2, . . . , T.

Observation model.

The observation probability functions are parameterized (without covari-
ates) as follows.
Given the RS regime, every probability function fj|1(yj |l), j ∈ R, l ∈ SL,
is specified by the linear local logit model:

log
fj|1(yj + 1|l)
fj|1(yj |l)

= ϕ0lj + ϕ1ljsj(yj), yj = 1, 2, . . . , cj − 1.

The ϕ0lj , ϕ1lj are parameters to estimate and the scores sj(yj) are known
constant defined as: sj(yj) = 1 for yj < cj/2, sj(yj) = 0 for yj = cj/2,
sj(yj) = −1 for yj > cj/2, yj = 1, 2, . . . , cj − 1. Parameter ϕ0lj governs the
skewness of the probability function fj|1(yj |l), so that it is symmetric with
ϕ0lj = 0, left and right skewed with ϕ0lj > 0 and ϕ0lj < 0, respectively.
This allows a parsimonious representation of various RS-types.
Given the RS regime, every probability function fj|2(yj |l), j ∈ R, l ∈ SL,
is parameterized by cj − 1 adjacent categories logits:

log
fj|2(yj + 1|l)
fj|2(yj |l)

= φyj l, yj = 1, 2, . . . , cj − 1.

2 Inference and Model Selection

Maximum likelihood estimates of the parameters, listed in θ, are calculated
via an EM algorithm. In the E step, the following expected values are
computed:

δ
(1)
it (u, l; θ̄) = Eobs(d

(1)
it (u, l)), (1)

131



Colombi et al.

where the latent binary variable d
(1)
it (u, l) is equal to 1 when the i-th unit

is at time t in state (u, l) and Eobs() is the conditional expected value
given the observed values of the responses Yjit, the covariates and given
the estimate θ̄ of the parameter vector θ.
Model selection can be based on indices for measuring the quality of clas-
sification and the distinguishability of the latent classes. Such an index,
based on the posterior probabilities of the latent classes (Bartolucci et al,
2012), takes in our set-up the form:

Sk =

∑n
i=1

∑T
t=1(δ

∗
it − 1/2k)

(1− 1/2k)nT
, (2)

where k is the number of states of the latent construct and δ∗it is, for unit
i at time t, the maximum with respect to (u, l) of the posterior latent
class probabilities (1). Measure Sk lies between 0 and 1, where 1 represents
certainty in classification and a perfect separation among latent classes,
while values close to 0 indicate that most of δ∗it are close to 1/2k, that is
like choosing the states in SL for both regimes RS and RS at random.
This index is very suitable for our context where the observed responses
are manifest realizations of the latent variables, therefore a good quality in
terms of separation of the 2k latent states is crucial.
In line with the literature which ignores the answering behavior, we
can measure the quality of the separation of the latent construct states
marginally with respect to U , so that (2) reduces to:

SL
k =

∑n
i=1

∑T
t=1(δ

L
it − 1/k)

(1− 1/k)nT
, with δLit = max

l∈SL

∑
u∈SU

δ
(1)
it (u, l; θ̄).

Moreover, in our context, the distinguishability among the k states of the
latent construct can be interestingly measured at the RS and RS regimes
separately. The Sk index is specified for this aim as follows:

S
L|RS
k =

∑n
i=1

∑T
t=1(δ

L|RS
it − 1/k)

(1− 1/k)nT
, with δ

L|RS
it = max

l∈SL

δ
(1)
it (1, l; θ̄)∑

l∗∈SL
δ
(1)
it (1, l∗; θ̄)

,

S
L|RS
k =

∑n
i=1

∑T
t=1(δ

L|RS
it − 1/k)

(1− 1/k)nT
, with δ

L|RS
it = max

l∈SL

δ
(1)
it (2, l; θ̄)∑

l∗∈SL
δ
(1)
it (2, l∗; θ̄)

.

3 Data analysis

The practical usefulness of the proposed model is illustrated on data from
the Bank of Italy and extensively discussed in Colombi et al, 2021.
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The household financial capability is the latent trait of interest that in-
fluences the household’s decision-making to face financial issues, measured
through two observed indicators: the self-perceived ability to make ends
meet and the self-report of perceived risk related to financial investments.
The way households perceive and disclose their perceptions (affected by
RS or not) can change over time, allowing also dependence on some demo-
graphic and economic household characteristics.

References

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2012). Latent Markov
Models for Longitudinal Data. CRC Press.

Colombi, R., Giordano, S., and Kateri, M. (2021). Hidden Markov mod-
els for longitudinal rating data with dynamic response styles.
AirXiv:2111. 13370v1.

Van Vaerenbergh, Y. and Thomas, T.D. (2013). Response styles in survey
research: a literature review of antecedents, consequences, and reme-
dies. International Journal of Public Opinion Research, 25, 195-217.

133



Alternative Approaches to Dynamic
Predictions: An Application on a Cohort of
Patients with Chagas disease

Enrico A. Colosimo1, Emilly M. Lima1, Maria C. P. Nunes2

1 Statistics Dept., Universidade Federal de Minas Gerais, Belo Horizonte, Brazil,:
2 Medical School,Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

E-mail for correspondence: enricoc@est.ufmg.br

Abstract: Prediction models have been used in several areas, especially in health
science. In many situations, they can serve as a tool for clinical support, help-
ing define risk groups by severity and assisting decision-making concerning the
most appropriate treatment. This study was motivated by a clinical demand on
building a death risk score for patients with Chagas disease, from the SaMi-Trop
prospective cohort project. Patients living in state of Minas Gerais, Brazil, were
followed for two years, and based on baseline information, a risk score was built
to predict 2-year mortality. The follow-up study allowed the nature of the death
risk to be dynamic. In this work, we propose four approaches to building dy-
namic scores: two naive ones, another based on a new landmark and the last one
considering a joint modeling approach.

Keywords: Cox model, joint modeling, landmark, risk prediction..

1 Introduction/Motivation

Statistical modeling for clinical data is often used to build prediction mod-
els in order to assess the risk of an individual experiencing an event within a
given time window. In practice, the most commonly used model for building
risk scores is the Cox proportional hazards model, which uses the informa-
tion from the markers recorded at baseline and a specific time window of
interest. We call prediction based on just baseline information as static.
Clinical studies involving a temporal response are prospective leading to
new measurements for markers that change over time. An example, which
is actually the motivation of this study, is the prospective cohort of the
SaMi-Trop Project (Sao Paulo-Minas Gerais Tropical Medicine Research
Center). This project is a large study involving chagasic heart disease pa-
tients living in 21 cities in the north of the state of Minas Gerais, Brazil.
Information from these patients, such as age, gender, heart rate and elec-
trocardiogram findings were recorded at the first visit (baseline) between
2013 and 2014.
A risk score was developed using the baseline information and death records
after two years of the first visit. Results were recently published in Oliveira
et al. (2020). This is exactly the scenario of a static prediction. A second

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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visit took place between 2015 and 2016. At this second visit, all time-
dependent markers were updated and, consequently, a dynamic prediction
is necessary for those patients who survived for two years.
The aim of this paper is to compare the prediction methodologies in longi-
tudinal survival data and use them to obtain dynamic predictions of death
risk for SaMi-Trop cohort patients who survived two years of follow-up.

2 Notation and Cox Regression Model
The Cox regression model the hazard function by

λ(t | x, y(t)) = λ0(t)e
x⊤β+y(t)γ , (1)

in which λ0(t) is a baseline hazard function, β is a p×1 vector of unknown
parameters associated with the fixed covariates x = (x1, x2, . . . , xp)

T and
γ measures the effect of the time-dependent covariate y(t). Without loss of
generality, model (1) considers just one time-dependent covariate.
The estimation of coefficients θ = (β, γ) in Eq. (1) is based on the partial
likelihood function L(θ) (MPLE).
Let’s consider x0 = {x, y(t = 0)} a baseline vector of covariates from a new
individual. The main interest lies in estimating the risk, r(t|x0) = P (T <
t|x0), which is the probability of occurrence of an event until time t. Its
estimator is obtained by:

r̂(t | x0) = 1− Ŝ(t | x0) = 1−
[
Ŝ0(t)

]exp{x⊤
0 θ̂}

. (2)

where θ̂ is the MPLE and Ŝ0(t) = exp{−Λ̂0(t)} is the Breslow estimator
of the baseline survival function evaluated at t.
Data splitting and bootstrap methods are used for internal validation to
avoid overestimating discrimination and calibration measures (overfitting).
We used training and test method and bootstrap to assess the predictive
accurary of the baseline model and bootstrap method for the dynamic
model. The Area under the ROC Curve (AUC), also known as C statistic, is
the most used measure to evaluate the discrimination of a prediction model.
We used an estimator for predictive error (PE), proposed by Henderson et
al. (2002), for calibration purpose.

3 Dynamic Prediction
There is an interest in obtaining a new estimate for the probability of an
individual experiencing the event until a new time u, u > t who survived
up to t. Four approaches are presented in this section for the purpose of
dynamic predictions.
One way to update the risk is to use the model built at baseline and plug-in
the estimator in (2) the new information obtained at time t, xt = {x, y(t)}.

Naive 1: the prediction for the individual who survived up to t is made
by just inserting the new information from the longitudinal marker in the
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formula (2). That is, the estimate is obtained by:

r̂N1(u|t,xt) = 1−
[
Ŝ0(u− t)

]exp{x⊤β̂+y(t)γ̂}
. (3)

Naive 2: the second method for the dynamic predicted risk takes into
account the conditional probability given the individual survival up to t
and the covariates updated information:

r̂N2(u|t,xt) = 1− Ŝ(u | xt)

Ŝ(t | xt)
.

Landmark: the landmark approach considers that a “new” sample is
formed including only individuals who have survived until time t. That
is

r̂(u|t,xt) = 1− Ŝ∗
0 (u− t)exp{x

⊤β̂
∗
+y(t)γ̂∗} (4)

where, β̂
∗
and γ̂∗ are the maximum partial likelihood estimators of the Cox

model coefficients and Ŝ∗
0 (u − t) is the estimated baseline survival under

the new baseline t.

Joint Modeling: in the joint modeling approach, the longitudinal marker
process y(t) is assumed to be measured with error such that, for the i-th
individual measured at the j-th time point, j = 1, . . . , Ji, its formulation
has the following structure:

yi(tij) = y∗i (tij) + εi(tij) = wT
i α+ zT

i (tij)bi + εi(tij),

εi(tij) ∼ N(0, σ2), (5)

where y∗i (tij) is the true and unobserved value for the longitudinal marker
process at time tij , wi and zi are the fixed and time-dependent vectors of
covariates associated with the regression coefficients α and random effect
bi, respectively. In order to accommodate random effects, it is assumed that
bi ∼ N(0,Σb) is independent of εi(t). Cox proportional hazards model is
now written in terms of y∗i (t), using the same notation as in (1).
After building the model, we are actually interested in estimating the con-
ditional probability

rJM (u|t,xt) = 1− SJM (u | t,xt) = 1− P (T > u | T > t,xt), (6)

which can be rewritten as

P (T > u | T > t,xt) =

∫
S [u | y∗(u),xt]

S [t | y∗(t),xt]
p(b | T > t,xt)db.

A first-order estimator (Rizopoulos, 2011) for the expected survival (6)
replaces θ∗ by its estimate θ̂∗ as

ŜJM (u | t,xt) =
Ŝ [u | ŷ∗(u),xt]

Ŝ [t | ŷ∗(t),xt]
. (7)

To obtain standard errors and confidence intervals for ŜJM (u | t,xt),
Proust-Lima and Taylor ( 2009) proposed Monte Carlo realizations.
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4 Real Data Analysis

Heart rate is the only longitudinal marker that was updated in the second
visit. At the current time, survival information after 4 years for the 2-year
survivors is only available for 283 patients. The median follow-up time was
63 months and it was observed that 110 (among 1544) patients experienced
the event (death) before 2 years and 80 (among 206) after the second visit.
The main results concerning discrimination and calibration are presented
in Table 1. Validation results are based on 200 bootstrap resamples. AUC
estimates are similar for the four approaches, with LM and JM being less
precise. The Naive 1 approach is not calibrated and JM has the smallest
PE value. In general terms, it seems that JM and Naive 2 have the best
results.

TABLE 1. Bootstrap validation results for predicting 4-year death risk for those
2-year survivors.

Approach AUC (CI 95%) PE
Naive 1 0.762 (0.736-0.783) 0.074
Naive 2 0.762 (0.736-0.783) 0.068
LM 0.759 (0.673-0.792) 0.070
JM 0.781 (0.667-0.885) 0.060

5 Final Remarks
We propose four different approaches to building dynamic risk scores. Dis-
crimination results are very similar for the four approaches. In terms of
calibration, the prediction error estimate is smaller for the Naive 2 and JM
approaches and Naive 1 has poor calibration. All approaches have some
limitations under the SaMi-Trop cohort data set. Probably the most re-
stricted one is the LM since there is a substantial in the sample size in
order to take into account the new baseline at two years of follow-up.
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Abstract: An area of clinical interest is understanding the association between
a time-dependent biomarker and a time-to-event outcome. To model this asso-
ciation joint models define a linear mixed model for the longitudinal outcome
and a Cox model for the time-to-event outcome. As an alternative, following a
multi-state framework opens up new modelling perspectives. By discretising the
longitudinal outcome, and using a continuous Markov model, interval-censored
observations can be considered as well as flexible modelling approaches that take
into consideration the biomarker thresholds and the time-dependency of the pro-
cess. Data from a randomised clinical trial for liver cirrhosis patients are used to
compare both methodologies with respect to estimation of treatment effects.

Keywords: Survival analysis; Continuous Markov model; Time-dependent co-
variates.

1 Introduction

Clinical trials commonly include longitudinal data, including data on
biomarkers. It is of biomedical interest to understand the association be-
tween a biomarker and the survival outcome. The Cox regression model
for a time-to-event can investigate the effects of longitudinal biomarkers.
However, the model cannot be used for prediction as it does not model the
longitudinal process of the biomarker; alternative modelling frameworks
are joint models and multi-state survival models.
Using data from a randomised clinical trial with 488 patients histologically
verified with liver cirrhosis, we analyse and compare the treatment effect
outcome using multi-state models and joint models.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).

138



Cuevas Andrade et al.

FIGURE 1. Nine-state model for the Liver Cirrhosis data. Living states are de-
fined by discretising the Prothrombin index.

For the joint model methodology, we follow the model proposed by Ri-
zopoulos (2012). A linear mixed model with cubic spline effect of time,
with different average profiles per treatment group is fitted.
For the multi-state methodology; we define eight living states by discretis-
ing the Prothrombin index (PI) . The Prothrombin index is a blood test
of coagulation factors produced by the liver, and it is a marker of severity
of liver disease. The death state is the ninth state, see Figure 1. Time-
dependency of the process is modelled using Gompertz baseline hazard
functions and using B-splines.

2 Multi-state model

Let {Yt | t ∈ (0,∞)} be a continuous Markov chain on the state space S,
and let P (t, u) be the D × D transition probability matrix with entries
prs(t, u) = P (Yt = s | Yu = r) , for 0 ≤ t ≤ u, and r, s = 1 . . . D.
The transition probabilities can be derived from the transition hazards,
P (t, u) = exp((u − t)Q(t)), where Q is the D × D generator matrix with
off-diagonal (r, s) entries qrs and diagonal entries qrr = −

∑
s̸=r qrs.

The transition-specific hazards can be defined combining a baseline hazard
with log-linear regression

qrs(t | x) = qrs.0(t) exp
(
β⊤
rsx
)
, (1)

where βrs = (βrs.1, . . . , βrs.p)
⊤

is a parameter vector, and x = (x1 . . . xp)
⊤

is the covariate vector. The baseline hazard qrs.0(t) describes the hazard’s
time-dependency.

2.1 Estimation

Considering interval-censored observations, the maximum likelihood is con-
structed with the transition probabilities (Kalbfleisch and Lawless, 1985).

139



Cuevas Andrade et al.

Assuming the transition into the death state D is known, and letting the
living states be indexed by 1, 2 . . . D − 1. For an individual i with obser-
vation times t1, . . . , tn, and an observed trajectory of states y1, . . . , yn, the
likelihood contributions for interval the (tj−1, tj) is given by

Li(θ | y, x) = P (YJ = yJ , . . . , Y2 = y2 | Y1 = y1, θ, x)

=

J−1∏
j=2

P (Yj = yj | Yj−1 = yj−1, θ, x)

C (yJ | yJ−1, θ, x) ,

where θ is the vector of parameters, and x is the covariate vector. If tj is
a living state then C (yj | yj−1, x) = P (Yj = yj | Yj−1 = yj−1, θ, x), and if
death is observed at tj then

C (yj | yj−1, x) =
D−1∑
s=1

P (Yj = s | Yj−1 = yj−1, θ, x) qsD (tj−1 | θ, x) .

The probability transition matrix is computed using the eigenvalue-
decomposition method, and the log-likelihood is maximised using the
Nelder-Mead optimisation method from the general purpose optimiser
optim, R-package.

3 Application

The data used are from a randomised clinical trial for liver cirrhosis pa-
tients, the outcome was survival and the aim was to analyse if the hormonal
treatment prednisone improved survival for patients with cirrhosis. Patients
were monitored by measuring blood Protrombin level. This dataset is avail-
able in the JM, R-package.
The number of patients considered in the study was 488; 251 received pred-
nisone and 237 received placebo treatment. The patients were followed-up
for 12 years. The follow-up visits were every 3 months for the first year and
annually afterwards. However, the visits are rather irregular.
The Prothrombin index is a measurement based on a blood test of coagula-
tion factors produced by the liver. The cut-offs reported within the normal
range are from 70% to 100%, having a low Prothrombin index is associ-
ated with severe liver fibrosis. Having an abnormal Prothrombin index is
reversible, patients can return to a normal value.
For the joint model approach, the longitudinal outcome can be modelled
using a linear mixed model with a natural cubic spline effect for time.
The linear treatment effect estimate associated with the risk for death is
γ = 0.209 with a standard error of 0.1401. For further details of this model
please see Rizopoulos (2012, Chapter 5).
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The multi-state model includes treatment as a covariate for the forward,
backward, and dead transitions. Now, taking into account the normal range
cut-offs of the Prothrombin index, we propose an innovative modelling per-
spective by including a new variable d. This additional variable allows mod-
elling the biomarker threshold and its association with the risk for death.
Given that the normal ranges of this biomarker [70, 100] are defined in the
middle states of the process, we define d as the absolute difference between
the current state and 4.5. Recall, that state 4 is defined for a Prothrombin
index between [60, 80] and state 5 between [80, 100].
Furthermore, the effect of time is taken into consideration using Gompertz
baseline for the backward transitions and death. The hazards for this model
are defined as

qr,r+1(t) = exp (β1 + γ1trt) for r = {1, 2, 3, 4, 5, 6, 7}
qr,r−1(t) = exp (β2 + γ2trt+ ξ1t) for r = {2, 3, 4, 5, 6, 7, 8}

qr,9(t) = exp (β3 + γ3trt+ ξ2t+ η1d) for r = {1, 2, 3, 4, 5, 6, 7, 8} ,
(2)

where trt is equal to 1 if the treatment given was prednisone, and zero
otherwise, and d =| r−4.5 |. Model selection was made using the AIC value
criteria. The AIC value for this model is 9511.22. The estimated value of
the covariate associated with the treatment effect for the risk for death is
γ3 = 0.295 with a standard error of 0.115.
As shown above, both frameworks yield a similar estimate value of the
treatment effect associated with the risk for death. However, Figure 2 shows
the effect of including the distance to the middle states of the process (d)
in the hazard for death. Having a low [0, 20] or high [140, 200] PI implies a
higher hazard for death than having a PI index between 60 and 100.
As an extension of the above, B-splines can be fitted to model the time-
dependency of the process allowing for a more flexible baseline hazard.
The knots are equidistant, and the number of knots and the degree of the
polynomial segments can be chosen ad-hoc based on features of the data
and computational aspects (Eilers and Marx 1996).
For instance, the hazard for death can be modelled as follows

qr,9(t) = exp

(
K∑

k=1

αr9.kBk(t) + γ3trt+ η1d

)
,

where K is the number of knots, and Bk(t) are the spline basis matrices,
for r = {1, 2, 3, 4, 5, 6, 7, 8}.
The left plot in Figure 2 shows the estimated hazards for death from state
1 and state 4 using B-splines with a third-degree polynomial and K = 7.
The AIC value of the model is 9566.55.
As expected, in Figure 2 we can see that the same effect concerning the
value of d in the hazard for death is consistent in both estimated hazards;
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FIGURE 2. Parametric Gompertz hazard for death from state 1 (black curve)
and state 4 (grey curve). Estimated hazard for death from state 1 (black line)
and from state 4 (grey line) using B-splines with a third-degree polynomial and
K = 7 for patients that received prednisone treatment from the Liver Cirrhosis
data.
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FIGURE 3. Histogram of deaths from patients that received prednisone treatment
from the Liver Cirrhosis data.

being at the boundaries of the process implies a higher hazard of death
than being at state 4 or 5.
B-splines can perform poorly if there is sparse or missing data which is
typically at the lower and upper bound of the data. In this case, from
Figure 3 we can see that the highest number of deaths happened in the first
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two years of the study and the latest observed death is in the year tenth.
However, since the latest observation (censored) is in the year thirteen, the
splines are fitted for a timeline from zero to fourteen. Therefore, the lack
of observations after year tenth explains the behaviour at the boundaries
of the estimated hazards in Figure 2.
Despite B-splines not being optimal at the boundaries, the comparison
illustrates the modelling flexibility that B-splines can add to the estimated
hazards, and the AIC value provides some evidence that the Gompertz
hazard is a good choice for estimating the hazard for death.
As mentioned above, the number of B-splines and the degree of the poly-
nomial segments are chosen based on the data features and computational
aspects. One way to address the question of how many splines to use is by
controlling the smoothness of the likelihood by using P-splines (Eilers and
Marx 1996), this alternative will be further explored.
In conclusion, following a multi-state approach allows us to model the time-
dependent biomarker from a different perspective by discretising it, en-
hancing clinical research considerations such as modelling the biomarker
threshold. Also, the time-dependency of the process can be considered us-
ing flexible modelling approaches such as B-splines.
Furthermore, under a multi-state framework, there is no need to compute
marginal estimates to derive population-based inference as it is when using
joint models.
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of the authors and do not necessarily represent the official views of PTE
or the Awarding Agency.
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1 Introduction

Nowadays, variable selection is an essential issue in regression modelling as
high dimensional data. Modern applications of statistical theory and meth-
ods can involve massive data sets, often with a massive number of variables
measured on a relatively small number of experimental units (Johnstone
and Titterington, 2009). Methods for analyzing high-dimensional data are
being developed in various fields of science, such as Bioinformatics and
Genomics. Regardless of the field of application, the goal of all these meth-
ods is to identify a subspace of the data that contains all the valuable
information. Therefore, spotting noise and significant covariates is a major
concern when studying the effect on the response variable of interest. The
LASSO penalized regression model is one of the most widely used tech-
niques (Tibshirani, 1996), but unfortunately, the selected coefficients suffer
from substantial bias (Fu and Knight, 2000). In this paper, we present a
new non-convex penalty function based on the standard normal cumulative
distribution: for this reason, we will refer to it as the CDF penalty function.
We will show that it inherits part of the advantage of both LASSO and
SCAD.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).

144



Cuntrera et al.

2 The proposal: the cumulative distribution function
penalty

Let be data (yi, xi), i = 1, ..., n, where xi = (xi1, ..., xip)
T are the covariates

and yi is the response. Operating in linear regression framework, we assume
independent observations, and that the set of covariates xi is standardised.
In a classical linear regression context, the dependence of a response vari-
able on one or more covariates is modeled as yi = xT

i β + ϵi, where β is the
parameter vector and ϵi are independent and identically distributed random
Gaussian noise. The ordinary least squares (OLS) estimates are obtained
by minimizing the sum of the model residuals. Penalized regression models
are based on adjusting the trade-off between bias in the estimates and their
variance, so they mediate the need to have a model close to the data and
reduce the estimated coefficients’ variance. Following Fan and Li (2001),
in linear regression models, the penalized objective loss function can be
defined as follows

1

2n

n∑
i=1

(yi − xT
i β)

2 +

p∑
j=1

p(βj , λ) (1)

where p(β, λ) is the penalty function that allows for selecting variables, thus
reducing the estimates’ variance. The tuning parameter λ determines the
weight of the penalty in optimizing the function: high tuning parameter
values cause some estimates to be bound to zero; reducing its value de-
creases the number of coefficients bounded to zero. In general, the problem
is to find the optimal intermediate value.
We propose to specify the penalty term in (1) by using a transformation
of the cumulative distribution function of the standard Normal random
variable. We define the penalty as

p(βj , λ) = λ p(βj) = λ
√
2πκΦ

(
|βj |
κ

)
. (2)

The CDF penalty (2) ensures variable selection (due to singularity at 0,
as LASSO, SCAD and MCP). κ influences the rate of convergence of co-
efficient estimates to maximum likelihood estimates of the selected model
and in practice it is chosen to ensure continuity of the coefficients path.
The proposed penalty is intended to mimic some of the good features of
SCAD (Fan and Li, 2001) and MCP (Zhang, 2010) penalties by reducing
the bias of the LASSO. Figure 1 shows the shape of SCAD, MCP, LASSO
and CDF penalty. The CDF penalty has been represented for three differ-
ent values of κ. It can be seen that our proposal is a trade-off between the
LASSO (which is obtained for higher values of κ) and the SCAD and MCP
penalties (which are obtained for smaller values of κ).
There are several advantages of (2) with respect to SCAD or MCP, the
most notable being that (2) is multiplicative, namely it is possible to write

145



Cuntrera et al.

−4 −2 0 2 4

SCAD

β

−4 −2 0 2 4

MCP

β

−4 −2 0 2 4

LASSO

β

−4 −2 0 2 4

CDF

κ = 1
β

−4 −2 0 2 4

CDF

κ = 3
β

−4 −2 0 2 4

CDF

κ = 7
β

FIGURE 1. The CDF penalty at different values of the parameter κ.

p(β, λ) = λ p(β); therefore the shape of penalty is independent of λ and it
does not change along the coefficient path.
Recalling Fan and Li (2001), a penalty function has to satisfy the following
conditions to have the properties of sparsity, continuity and nearly unbi-
asedness:

1. limβ→+∞ p′λ(|β|) = 0;

2. min[|β|+ p′λ(|β|)] > 0 ;

3. the minimum of |β|+ p′λ(|β|) is attained at 0.

The first-order derivative of CDF penalty is equal to exp−
{

|β|2
2k

}
, so it

is easy to see that the first condition is guaranteed (independently from
the value of κ). In figure 2 is reported the plot of |β| + p′λ(|β|) for three
different values of κ. Independently on κ, the minimum value is equal to
1, and it is attained always on 0. So, the second and the third conditions
are guaranteed. We can conclude that the CDF penalty enjoys sparsity,
continuity, and nearly unbiasedness properties.
Therefore the proposed sparse and quasi-unbiased estimator of the regres-
sion coefficient vector is defined

β̂ = argmin

{
1

2n

∑
i

(yi − xT
i β)

2 + λ
∑
j

√
2πκΦ(|βj |/κ)

}
. (3)
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FIGURE 2. Plot of |β|+ p′λ(|β|) for different values of κ.

To solve (3), we propose to use the ADMM (Alternating Direction Method
of Multipliers) algorithm. The problem can be rewritten as follow

min f(β) + g(β̃) s.t.β − β̃ = 0

where

f(β) =
1

2n
∥y −Xβ∥2 g(β̃) = λ

p∑
j=1

√
2πκΦ

(
|β̃j |
κ

)
. (4)

The augmented scaled Lagrangian function to be optimized is

Lρ(β, β̃, γ) = f(β) + g(β̃) +
ρ

2
∥β − β̃ + γ∥22. (5)

where ρ > 0 is a fixed constant only affecting the convergence speed and
not the final solution. Once the problem has been formalized, the ADMM
algorithm alternates, until convergence, the followings

βk+1 = argmin
β

f(β) +
ρ

2
∥β − β̃ + γ∥22 (6)

β̃k+1 = argmin
β̃

g(β̃) +
ρ

2
∥β − β̃ + γ∥22 (7)

γk+1 = β − β̃ + γ. (8)
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3 Simulation study

A simulation study is conducted to compare the performance of the pro-
posed penalty with respect to alternatives already established in the lit-
erature (LASSO, SCAD and MCP). Performance is measured by mean
square error (MSE) and false discovery rate (FDR). For the true parame-
ter β0 = (1, 1, 1, 1, 1, 0, ..., 0)T , and p = 100 covariates xi ∼ N (0,Σ) with
the Toeplitz correlation matrix Σjk = 0.5|j−k|, the response variable is
generated as yi = xT

i β0 + σkϵi where n = 50, ϵi ∼ N (0, 1), and the σk

are twelve different equally-spaced values ranging in [0.25, 3.0] of the ran-
dom noise variance regulating the signal-to-noise ratio. For each scenario
reported, 500 simulations were ran and at each replicate the optimal λ for
each penalty has been selected by minimization of BIC using the number
of non-null estimates as degrees of freedom. Moreover the additional pa-
rameters for SCAD and MCP are fixed at the usual values of 3.7 and 3
respectively, while the κ parameter of CDF is computed as a known func-
tion of the selected λ.
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FIGURE 3. Simulation results at different values of signal-to-noise ratio.

Results of the simulations, in terms of MSE and FDR, are shown in Figure
3. Looking at the MSE values of SCAD and MCP (panel (a)), they have
similar values that are much higher than those of LASSO and CDF penal-
ties. Our proposal has the lowest value of MSE across all the σ values. Also
in terms of FDR (panel (b)), the CDF penalty outperforms the considered
competitors: the values observed are much lower than those obtained with
LASSO, SCAD and MCP.
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4 Conclusion

In this paper we have presented a new SCAD (or MCP) type penalty: it is
based on the cumulative distribution function of the standard normal with
an additional shape parameter (κ). Our proposal borrows the stability of
LASSO, keeping some important features of SCAD and MCP in terms of
unbiasedness of the non-null estimates. Based on some simulation experi-
ments, the results show that our proposal outperforms the competitors in
terms of both MSE and FDR.
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1 Introduction

During our statistical training, we learn that correlation coefficients are
only good for detecting linear relationships. Unfortunately, within the data
science community often people use the correlation coefficients indiscrimi-
nately for detecting any relationships between the features in the data. To
add to the confusion, in his more recent popular book “Helgoland”, the
physicist Carlo Rovelli uses the term “correlation” to describe what we
would be called in statistics a “relationship” between variables. It seems
that there is scope for the statistical community to go back to the basics and
rethink the use of correlations and its contribution to statistical modelling.
This paper is such an attempt.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Linear correlation coefficients are well established in the statistical litera-
ture as a measure of the strength of linear relationship between two vari-
ables. Our motivation for studying non-linear correlations stems from the
fact that if there is a high correlation between the explanatory variables
of a statistical model, this often results in instability and difficulty of in-
terpreting a fitted model for a response variable. For linear models the
problem is well established under the term collinearity or the more general
term multicollinearity when more than two variables are involved.
For additive smoothing terms, Hastie and Tibshirani (1990), used the term
concurvity to describe the problem of non-linear relationships between two
explanatory variables involved in the model, and the term multiconcurvity
can be used when more that two variables are involved. It is generally re-
cognized that there are two major problems associated with concurvity: the
first has to do with fitting the additive model especially if one uses back-
fitting; the second has to do with interpreting the model since concurvity
could make the fitted model unstable and sensitive to small changes in
the explanatory variables. The first problem is reduced by ‘modified’ back-
fitting, see Hastie and Tibshirani (1990) and Stasinopoulos et. al. (2017,
Ch. 3). The second is the main reason for the exploration for non-linear
correlations in the features in this paper. A “non-linear correlation” be-
tween the covariates would help to expose (multi)concurvity and possible
pitfalls in the interpretation of a model.

2 A review of non-linear correlation coefficients
methods

As with linear correlation coefficients, here we are looking for summary
measures (and possibly graphical tools) which could flash up when a non-
linear relationship exists between the covariates.
The relationship between two or more variables can be i) pairwise ii) full,
that is, between one of the term and the rest, and iii) pairwise partial of
two terms correcting for the contribution of other terms.
This paper concentrates on pairwise non-linear correlations, but at a later
stage generalizations will be considered. Non-linear relationships can be
in parts negative and in other parts positive, therefore, unlike the well
known linear correlation coefficients that returns a value between, −1 to 1
to reflect the direction of the association, the non-linear correlation should
take values from 0 to 1 indicating whether there is a strong non-linear
relationship (close to one) or a weak non-linear relationship (close to zero).
Besides the well known Pearson, Kendall and Spearman correlation coeffi-
cients, we considered smoothing techniques, concurvity measures, canoni-
cal correlation, mutual information, maximal and distance correlations to
measure the association between two variables.
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The first idea is to fit variable x2, as explanatory term, to x1, using a
smooth function of x2, in order to model their pairwise non-linear relation-
ship and then calculate the correlation coefficient of the fitted values of x̂1

with x1, i.e. r1,2, as the non-linear correlation between them. The asym-
metry of the relationship creates problems since interchanging x1 and x2

can produce a completely different non-linear correlation. A simple solu-
tion, is to take the maximum of the two correlation coefficients as the final
measure of non-linear association, i.e. max{r1,2, r2,1}. The following are the
three different smoothing techniques used in this paper. i) Regression trees
using the predictive power score, (pps), of the R package ppsr (van der
Laken, 2021); ii) dynamic partition, (dp), using the R package nlcor which
regresses x1 against x2 using linear segmental regression (Ranjan and Na-
jari, 2022); and iii) P-splines, Eilers and Marx (1996), (pb), where the
smoothing parameter is selected using restricted maximum likelihood.
A concurvity measure can be defined as a measure of statistical dependency
among covariates. According to Wood (2017), concurvity occurs when some
smooth term in a model could be approximated by one or more of the
other smooth terms in the model. The first approach here is based on the
concurvity() function from the mgcv R package. It analyses the linear
manifolds of the additive term bases B1,B2, . . . ,BJk

. It tries to identify
whether a manifold of one of the smoothers,M(Bi), is close to the manifold
of another M(Bj), for i ̸= j, by fitting a multivariate least squares model
and then calculating the R-square statistic using the fitted sum of squares
divided by the total sum of squares. The sums of squares are defined by
the Frobenius norm, (F), given by ||A||F = [trace(A⊤A)]1/2. The second
method uses canonical correlation analysis, cc, on the manifolds M(Bi)
and M(Bj) and reports the first (highest) correlation coefficient between
them. A similar approach is used also by Huang et. al. (2009). Note the
bases Bi for i = 1, 2 were created using equal space B-splines with 15
number of knots.
In information theory the concept of entropy, H(x) = −Ep log p(x) mea-
sures the randomness of (one or more) random variables x which have
probability function p() (Cover and Thomas, 1999). Note that entropy is
defined by probabilities not by the values of x. Low entropy is associated
with more order, while high with more randomness. Here we used the ma-
ximal information coefficient approach, MIC, of Reshef et al. (2011) which
uses the concept of mutual information. Note that this approach require
the continuous covariates to be discretized. The maximal correlation, mC,
is defined as mC = maxf,g Cor(f(x), g(y)) for smooth functions f() and
g() which can be obtain using the R package acepack. The distance corre-
lation dC which uses distance matrices for both variables is obtained using
the dcor() function from package energy.
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3 Examples

To check the suitability of the different measures of non-linear correlation
we used 12 different examples. Figure 1 shows the twelve different cases of
linear and nonlinear relationship between two explanatory variables. Cases
1, 4, 5, 6, 8, 10 and 11 seem to be the most likely cases to create problems
in the fitting and the interpretation of a model for a response variable. Case
9 (the double moustache) and case 12 (the doughnut) are very unlikely to
occur in practice but they are of interest for checking non-linear association.

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

FIGURE 1. Investigated cases of linear and non linear correlation between two
variables. The cases numbers are the same as in Table 1.

The estimated coefficients using the methodology described in Section 2
are given in Table 1. As expected, the Pearson, Spearman and Kendall
correlation coefficients perform well in the linear cases 1, 2, 3, but also in the
non-linear cases 4, 10 and 11. However they fail to detect the relationship
in the non-linear cases of 5, 6, 8, 9 and 12.
From the smoothing techniques, the regression trees method pps performed
rather poorly compared to the dynamic partition dp and P-splines pb
methods. The dp and pb performed similarly and well in most cases, apart
from cases 9 and 12 where they failed to capture the relationship.
Both concurvity measures F and cc performed well, with realistic coeffi-
cients, apart from the case 3 where they should be close to zero but they
instead at values 0.119 and 0.343, respectively. In particular they captured
the non-linear relationships in cases 9 and 12, although the coefficient 1 for
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TABLE 1. Comparison between correlation coefficients for the artificial data. The
notation used is r: Pearson’s, τ : Kendall’s and ρ: Spearman’s correlations; pps:
predictive power score; dp: dynamic partition; pb: P-splines; F: concurvity using
the Frobenius norm; cc: concurvity using canonical correlation; MIC: maximal
information coefficient; mC: maximal correlation; dC: distance correlation.
Case r τ ρ pps dp pb F cc MIC mC dC
1 0.88 0.69 0.87 0.50 0.88 0.88 0.79 0.89 0.62 0.88 0.85
2 0.33 0.21 0.31 0.04 0.33 0.38 0.18 0.42 0.19 0.33 0.29
3 -0.08 -0.05 -0.08 0.00 0.08 0.08 0.12 0.34 0.14 0.09 0.08
4 -0.94 -0.97 -0.99 0.85 0.94 1.00 1.00 0.99 1.00 0.99 0.96
5 0.04 0.00 0.02 0.46 0.84 0.87 0.80 0.89 0.77 0.89 0.37
6 0.00 0.00 0.00 0.51 0.88 0.90 0.85 0.92 0.77 0.92 0.15
7 -0.03 -0.02 -0.04 0.05 0.35 0.31 0.17 0.41 0.19 0.31 0.16
8 -0.01 0.00 -0.00 0.24 0.68 0.71 0.54 0.74 0.39 0.72 0.39
9 -0.03 -0.02 -0.03 0.01 0.03 0.06 0.85 0.92 0.43 0.91 0.85
10 -0.83 -0.65 -0.84 0.59 0.89 0.93 0.88 0.94 0.82 0.94 0.86
11 0.91 0.93 0.99 0.76 0.91 0.99 1.00 0.99 0.99 0.98 0.94
12 0.04 0.01 0.03 0.00 0.04 0.06 0.71 0.84 0.36 0.83 0.16

F in case 11 seems too extreme. Unfortunately they were very sensitive on
the number of knots used. The MIC and dC performed reasonably well,
but they failed to capture the doughnut case 12. The mC performed very
well in all cases.

4 Conclusions

The maximum correlation, mC, performed best, providing a realistic non-
linear measure of association (between two features or explanatory vari-
ables) in all the examples considered. The Frobenius norm, F, from the
concurvity techniques also performed well, followed by the maximal infor-
mation coefficient, MIC.
The canonical correlation, cc, from concurvity, performed well except for
the random scatter (case 3), where its correlation value was too high. The
distance correlation, dC, performed well, apart from the doughnut (case
12), while the dynamic partition, dp, and the P-splines, pb, from the
smoothing techniques, performed well, apart from the double moustache
(case 9) and the doughnut (case 12).
All of measures are relatively fast to calculate. One possibility is to combine
two or more measures of association together, in order capture different
features of the association. There is more investigation and verification to
be done in the near future.
We conclude with the following notes. The construction of any correlation
coefficient between two variables x and y seems to follow four steps: i)
transformations of the variables involved: i.e. (x, y) → (x̃, ỹ), ii) a definition
of a metric< x̃, ỹ >, iii) use of the metric for the definition of the correlation
measure Γ = <x̃,ỹ>

||x̃||||ỹ|| where || || is a norm, and iv) test whether the metric

is zero or not. For a proper comparison of non-linear correlations all steps
should be investigated and evaluated properly. Note also that the in the
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current paper the maximum local correlation integral approach of Chen et
al. (2010) has been omitted because it does not provide automatically a
measure of association in the interval (0, 1), but only provides a test for
checking the non-llinear association.
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Abstract: In medical studies, repeated measurements of biomarkers and time-
to-event data are often collected during the follow-up period. To assess the asso-
ciation between these two outcomes, joint models are frequently considered. The
most common approach uses a linear mixed model for the longitudinal part and
a proportional hazard model for the survival part. The latter assumes a linear
relationship between the survival covariates and the log hazard. In this work, we
propose an extension allowing the inclusion of non-linear covariate effects in the
survival model using Bayesian penalised B-splines. Our model is valid for non-
Gaussian longitudinal responses since we use a generalized linear mixed model for
the longitudinal process. Data from intensive care unit are analysed to illustrate
the method.

Keywords: Joint models; Survival analysis; Bayesian P-splines.

1 Introduction

In medical studies, while the primary interest is often to record the time at
which a particular event occurs, information on multiple biomarkers is also
collected longitudinally throughout the follow-up period. This provides a
combination of survival and longitudinal information on each individual
under study. Sometimes longitudinal measurements could have a predic-
tive role in the analysis of patient survival. The joint modelling framework
is therefore proposed to assess the association between longitudinal mea-
surements and the event risk. In the most common joint model approach,
repeated measurements of a biomarker are modelled using a mixed model
and the risk event is modelled using a proportional hazard model. Latent

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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variables are used to capture the association between the two outcomes. The
book of Rizopoulos (2012) provides an overview of the theory of these joint
models. In this paper, we focus on the flexibility of the survival submodel.
We propose a joint model allowing the inclusion of non-linear covariate
effects in the survival model. Our proposal is illustrated using data from
an intensive care unit. We aim to assess the association between patient
hypotension and the risk of developing delirium, taking into account the
potential non-linear effect of some delirium risk factors. We compare our
results with those obtained with the JMBayes package. This package allows
to compute a joint model under a Bayesian approach but does not enable
the inclusion of non-linear covariate effects in the survival submodel.

2 The joint model

2.1 Longitudinal submodel

For every individual (i = 1, . . . , n) we observe the vector of longitudinal
response yi at time points ti = [ti1, . . . , tini

]T. The subject-specific evolution
over time of the longitudinal response is model using a generalized linear
mixed model (GLMM). In particular, we postulate

ηi(t) = g{E(yi(t) | bi)} = xi
T(t)β + zi

T(t) bi (1)

where xi(t) and zi(t) are the time-dependent design vectors associated re-
spectively with the vector of fixed effect β and the vector of Gaussian
random effects bi with mean 0 and variance-covariance matrix D. Condi-
tionally on the random effects bi, the distribution of yi is assumed to be a
member of the exponential family and g(.) denotes the associated canonical
link function.

2.2 Survival submodel

To model the event risk, the most standard approaches in the joint mod-
elling framework rely on the proportional hazard models for the conditional
hazard:

hi(t|Ni(t), ωi) = h0(t) exp{γωTωi + αηi(t)}, t > 0 (2)

where h0(t) is the baseline hazard function, ωi = [ωi1, . . . , ωip]
T is the

vector of baseline covariates with the corresponding vector of coefficients
γω. Parameter αmeasures the strength of the association between the linear
predictor at time t, ηi(t), and the event risk at the same time. Ni(t) =
{ηi(s), 0 ≤ s < t} denotes the history of the true unobserved longitudinal
process up to time t. To specify h0(t), Rizopoulos (2012) proposes a B-
spline approach that allows flexibility and expresses the logarithm of the
baseline hazard function as follows

log{h0(t)} =
U∑

u=1

γh0,ubu(t)
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where γh0
is the B-spline coefficients associated to the uth cubic basis

function bu(t).

2.3 Flexible survival submodel

We propose an extended version of (2) that allows for possible non-linear
effects of some survival covariates. Specifically, we have

hi(t|Ni(t), ωi, vi) = h0(t) exp{γωTωi +

q∑
j=1

fj(vij) + αηi(t)}, t > 0 (3)

where vi = [vi1, . . . viq]
T is a vector of continuous covariates whose effect is

potentially non-linear. The additive terms fj are estimated using a B-spline
approach and are expressed as

fj(vij) =
K∑

k=1

γv,jkbjk(vij)

where γv,jk represents the B-spline coefficient associated to the cubic B-
spline basis function bjk(.) at the respective covariate value vij . As sug-
gested by Eilers and Marx (1996), we choose a large number of equally
spaced knots and we counterbalance the flexibility of the fit by adding a
roughness penalty based on differences of adjacent B-spline coefficients.

3 Bayesian Estimation

We estimate the parameters of the joint model (1) and (3) using MCMC
algorithms. Assuming independence between the longitudinal and survival
processes conditionally on the random effects bi, the likelihood contribution
for the ith subject is given by

p(Ti, δi, yi; θ) =

∫
p(Ti, δi|bi; θs, β)

[ ni∏
j=1

p
{
yi(tij)| bi; θy

}]
p(bi; θb) dbi

A Gauss-Kronrod quadrature is used to approximated the integral involded
in p(Ti, δi|bi; θs, β).

The roughness penalty introduced in Section 2.3 is translated into a mul-
tivariate prior for the B-spline paramaters γv as

p(γhv |τv) ∝ τρ(K)/2
v exp

(
− τv

2
γT
v K γv

)
and τv ∼ Gamma(a1, b1)

where τv are smoothing parameter and K = ∆T
r∆r is the penalty matrix of

rank ρ(K), where ∆r denotes the rth difference penalty matrix. We consider
the same specification for γh0 with the respective smoothing parameter τh0 .
Univariate diffuse normal priors are used for γw and α.
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4 Simulation

We perform a simulation study to evaluate the statistical performance of
our approach (‘FlexibleJM’). We extract N=100 samples of n=500 individ-
uals, on which a longitudinal counting response is recorded. Each individual
is assumed to be observed for a maximum number of repeated measure-
ments equal to 10. The specification of the joint model considered is defined
as follows :{

ηij = β0 + β1tij + b0i + β2wci + β3wli

hi(t) = h0(t) exp
{
γ1wci + γ2whi + f1(vi1) + f2(v2i) + αηi(t)

}
where wci, wli, whi

i.i.d.∼ Bin(1, 0.4). We generate the observed longitudinal
measurements from yij |b0i ∼ Pois(λij) where ηij = log(λij). The true base-
line hazard function is simulated from a Weibull distribution. The smooth
additive terms are defined with the functions:

f1(vi1) = −0.07v1i + 1.6 ; f2(vi2) = − sin((vi2 + 30)/20)− 4

where vi1 ∼ U(16, 35), vi2 ∼ U(18, 89). Survival times are generated using
an algorithm involving numerical integration and root-finding techniques
described by Lambert and Crowther (2013). On average, 445 (89%) events
occur.

In Figure 1, we show the estimation of the smooth additive terms (gray
curves) across all replications. The estimated curves are close to their target
(red curves).
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FIGURE 1. True (red) and estimated (gray) smooth functions f1 and f2.

In Table 1, we compare the simulation results for the estimated parameters
obtained with the FlexibleJM and JMBayes methods, the latter approach
wrongly assuming linear forms for functions f1 and f2 (Rizopoulos, 2016).
While both approaches show similar performance for the regression pa-
rameters β0, . . . , β3 in the longitudinal submodel, the FlexibleJM method
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outperforms JMBayes in estimating the regression parameters γ1 and γ2
and, to some extent, the association parameter α, due to the presence of
non-linear effects in the survival part.

TABLE 1. Simulation results for N=100 replicates of sample size n = 500 with
the FlexibleJM and JMBayes methods : bias and root mean square error (RMSE)
for the estimators of the regression parameters.

FlexibleJM JMBayes

True Bias RMSE Bias RMSE

β0 1.1 0.010 0.026 0.010 0.025
β1 -0.1 -0.005 0.006 -0.005 0.006
β2 -0.6 0.020 0.049 0.020 0.049
β3 0.3 -0.010 0.038 -0.010 0.039

γ1 1.3 -0.314 0.353 -1.364 1.364
γ2 0.4 -0.039 0.104 -0.348 0.384
α -1.0 0.504 0.529 0.529 0.563

5 Application

Patients admitted to an intensive care unit (ICU) are likely to develop
cerebral dysfunction and, in particular, delirium. Brain dysfunction can be
caused by a prolonged state of low blood pressure, called hypotension. We
use a joint model to investiguate whether there is an association between
hypotension and the risk of developing delirium. The measured longitudinal
response is the number of hypotensive episodes for a patient in one day.
Possible risk factors for the occurence of delirium are body mass index
(BMI), age and gender. The data set contains 243 patients. Follow-up times
varied between 1 and 22 days and 114 patients (46,9%) were right censored.
The FlexibleJM and JMBayes approches consider the following survival
sub-models respectively:

FlexibleJM : hi(t) = h0(t) exp{f1(BMI) + f2(Age) + γ1Gender+ αηi(t)}
JMBayes : hi(t) = h0(t) exp{γ1BMI+ γ2Age+ γ3Gender+ αηi(t)}

where f1 and f2 are two unknown smooth functions. While the traditional
analysis assuming linearity and relying on JMBayes does not confirm the
role of BMI as a risk factor, our approach FlexibleJM might suggest a
nonlinear effect of BMI on the risk of delirium (conditionally on Age and
Gender), see Figure 2, with Age playing an important predictive role.
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TABLE 2. Estimation results of the survival submodel parameters : estimates,
95% credible intervals, posterior standard deviations are presented.

FlexibleJM JMBayes

Est. CI 95% Est. CI 95%

BMI (see Figure 2) -0.002 [-0.034; 0.030]
Age (see Figure 2) 0.028 [ 0.013; 0.043]
GenderM 0.542 [ 0.169; 0.835] 0.497 [ 0.105; 0.863]
Assoc (α) 0.032 [-0.024; 0.094] 0.038 [-0.020; 0.098]
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FIGURE 2. Estimation of the non-linear effect of BMI and Age on the log hazard
function. The gray surface corresponds to a 95% pointwise credible envelope.
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Abstract: Smoothing with P-splines on networks with linear edges is a chal-
lenging and interesting task, because of equality conditions on fitted values (and
possibly derivatives) at nodes where edges join. I propose a model with explicit
constraints and Lagrange multipliers that gives complete freedom in the choice
of the degree of the splines, the number of knots and order of the penalty.
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1 Introduction

Observations on networks generate interesting statistical challenges. One of
them is estimation of the intensities of events along edges of the network.
Example are traffic accidents on roads, occupation of parking bays and
spines on the dendritic network of a neuron. The network can be simplified
as a collection of linear edges, connecting at the nodes. Points on the edges
locate the events.
It is of interest to model the intensity of the events. A simple approach
is to consider each edge in isolation and apply a smoothing algorithm.
That would neglect the connections between the edges, leading to jumps
in intensity when moving from one edge to a connected neighbor.
Schneble and Kauermann (2021) proposed to use P-splines. They combine
linear splines and a first order penalty with a special construction to join
edges, by sharing knots at the nodes. Their algorithm is implemented in
the R package geonet (Schneble 2021). This approach is hard to extend to
higher degrees of the splines. Also it does not allow constraints on deriva-
tives, at the nodes or elsewhere. I propose an alternative algorithm, allowing
free choice of knot positions, spline degree and order of the penalty. The key
point is tht it puts constraints on the fitted curves (and their derivatives,
if needed), using Lagrange multipliers.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Theory

Consider a very simple network, with three nodes and two edges. Edge 1
connects nodes 1 and 2, while edge 2 connects nodes 2 and 3. The edges
are straight lines and the relative position on an edge, generally indicated
by x, has a value between 0 and 1. For edge 1, x = 0 coincides with node
1 and for edge 2, x = 0 coincides with node 2. We have two data sets, one
the pair of vectors x1 and y1 of length m1 and the other the pair of vectors
x2 and y2, of length m2. The x vectors indicates positions on the edges.
The y vectors contain arbitrary observed values.
We wish to compute two smooth curves, one based on x1 and y1, the other
on x2 and y2. We use P-splines, combining a B-spline basis with a discrete
difference penalty (Eilers and Marx, 1996). The degree of the B-splines and
the order of the penalty can be chosen freely. We want the fitted curves to
connect without a jump at node 2. If we indicate the first curve by z1(x)
and the second one by z2(x), then the condition is that z1(1) = z2(0).
Let B1 be a B-spline basis, based on x1, and let P1 = λ1D

T
1D1 be the

penalty matrix. To fit P-splines to only the first data set, we solve

(BT

1B1 + P1)â1 = BT

1 y1 (1)

for the coefficient vector â1. A fitted curve on an arbitrary grid x̆ can then
be computed as z1 = B̆1â1, where B̆1 is a B-spline basis on that fine grid.
The choice of knots is free, as long as the domain of x1 is covered by the B-
spline basis. In an analogous way, we can fit the second data set separately.
If we form

B =

[
B1 0
0 B2

]
, (2)

we can fit both sets at the same time, by solving (B′B + P )a = B′y, with
a = [aT

1 | aT
2 ]

T, y = [yT
1 | yT

2 ]
T, and P a block-diagonal matrix, with P1 and

P2 on the diagonal. This has no advantages when there are no constraints,
but it is a convenient vehicle for adding them.
Currie (2013) showed that fitting P-splines with constraints Ca = 0 leads
to the system of equations[

BTB + P CT

C 0

] [
a
κ

]
=

[
BTy
0

]
. (3)

Here κ is a vector of Lagrange multipliers. Suppose we evaluate the first
basis at a chosen point x to get the row vector b1 and we evaluate the
second basis at the same x to get the row vector b2, then C = [−b1 | b2]
forces a fit with b1a1 = b2a2. Note that the degree of the B-splines and the
number of knots play no explicit role. The constraint works directly on the
fitted curves, and indirectly on their coefficients. At some nodes three (or
more) edges may join, which all should have the same value of their smooth
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curves. This can be arranged with two (or more) lines in C that constrain
different pairs.
The derivative of a B-spline fit can be expressed as Fa, with F = B̄D1/h,
with B̄ the B-spline basis matrix of degree one lower than that of B, D1

the matrix that forms first differences, and h the distance between knots.
That allows us to put a constraint on derivatives at arbitrary locations with
[−f1 | f2] as a row of C. Multiple simultaneous constraints, on values and
derivatives, lead to multiple rows of C.
To estimate an intensity curve on an isolated edge, we count events in
bins, to form a histograms y and model η = logµ = Ba, with µ = E(y)
the expected values of the counts (Eilers and Marx, 1996). We repeatedly
solve (BTM̃B + P )a = BT(y − µ̃+ M̃η̃), where a tilde indicates a current
approximation and M = diag(µ).
With two edges we have histograms y1 and y2 with expected values µ1 and
µ2, We join y1 and y2 to form y and we formM as the block-diagonal matrix
with M1 = diag(µ1) and M2 = diag(µ2) on the diagonal and repeatedly
solve [

BTM̃B + P CT

C 0

] [
a
κ

]
=

[
BT(y − µ̃+ M̃η̃)

0

]
. (4)

Here a tilde indicates the current approximation.
It is convenient to put constraints on η (and its derivative), not on µ, to
have a similar construction as in the case of linear smoothing.
To achieve the same amount of smoothing on edges of different lengths,
the penalties should have the form λ| |Dak| |/nk, where ak is the coefficient
vector, with length nk of segment k.
Automatic smoothing is attractive. With G = (BTM̂B + P )−1BTM̂B,
we have that the effective model dimension is ED = trace(G), which can
be used for the computation of AIC. Instead of searching for the mini-
mum of AIC for a series of values of λ, mixed model ideas can be used;
the Harville-Fellner-Schall (HFS) algorithm is attractive (Eilers and Marx,
2021). Assuming that the conditional distributions of the histogram counts
are Poisson with expectations µ, it can be shown that | |Dα| |2/ED = 1/λ.
This gives an easy way to update λ in each iteration.

3 A small example

The R package geonet contains data from a part of the highway network in
Montgomery county (Maryland, USA). Figure 1 shows a very small subset
of these data. There are 5 edges and 6 nodes. On each edge accidents are
located as dots; the goal is to estimate accident intensities.
One way to analyze these data is to interpret them as five coupled segments.
At node 2 the segments 1 and 4 connect, and at node 1 the four edges 1,
2, 3, and 5. All other nodes are end points of edges. Alternatively, we can
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interpret edges 4-1-5 and 3-2 as single linear segments and only have one
condition on the fitted values in node 1 where these segments connect.
The value of λ was determined by the HFS algorithm.

4 Discussion

By implementing constraints on fitted curves, instead of on the spline knots,
we get a lot of freedom in the specification of the P-splines we use. We can
also constrain derivatives, although the possibility to smooth connected
paths consisting of multiple edges reduces the need for this option.
Smoothing on paths can simplify the amount of work. The documentation
of the package geonet (Schneble 2021) describes a part of the road network
in Chicago. In typical American style much of it is a rectangular grid, which
can be modeled as a a combination of crossing vertical and horizontal paths.
However, in more general cases, it is often not automatically obvious how
to construct paths. In Figure 1 I connected the edged 4-1-5 and 3-2, but
4-1-2, connected to the two individual edges 3 and 5 would also make sense.
In a network with different types of roads, one might prefer to form paths
with road sections of equal type.
Intensity values have no sense of direction, but derivatives have. Intuitively
it feels that if edges join at a sharp angle, equality of derivatives is less
convincing.
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FIGURE 1. Road accidents in Montgomery county (selection). Left panel: five
segments, with the locations of accidents (dots). Right panel: two paths (edges
4-1-5 and edges 3-2) with histograms and fitted smooth curves. The vertical
broken lines indicate the node where the edges on a path connect. The thicker
vertical lines indicate where the two paths connect (at node 1). The circles there
indicate the fitted values, constrained to be equal.
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Abstract: Motivated by the detection of relevant covariates to explain casual
rentals in the Washington, D.C., bike sharing system, new nonparametric specifi-
cation tests for additive concurrent models are proposed. These are based on the
martingale difference divergence coefficient and exhibit the novelty that neither
it is necessary to estimate smoothing/penalizing parameters or model structure
compared to existing literature.
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1 Problem motivation

The capital of the United States, Washington, D.C., is one of the cities
most visited in the U.S. As an example, the number of visitors per year
exceeds 20 million since 2014. In consequence, the Capital bikeshare system
has interest in predicting casual bike rentals, defined as rentals to cyclists
without membership in the program, to properly face the demand.
Making use of the Washington, D.C., bike sharing dataset of Fanaee-T and
Gama (2014), collected from 1 January 2011 to 31 December 2012, we try
to determine which meteorological covariates influence casual bike rentals

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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on Saturdays. For this purpose, four covariates are considered: daily tem-
perature (temp), feeling temperature (atemp), humidity (hum) and wind
speed (wind). Complete data is displayed in Figure 1.
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FIGURE 1. Daily temperature (temp), feeling temperature (atemp), humidity
(hum), wind speed (wind) and casual bike rentals on an hourly basis in Wash-
ington, D.C., on Saturdays.

How it is expected that meteorological variables have real-time dynamic
effects on the number of bike rentals, we can relate them by means of a
quite flexible additive concurrent model. This is given by

Y (t) =F1(t,Xtemp(t)) + F2(t,Xatemp(t))

+ F3(t,Xhum(t)) + F4(t,Xwind(t)) + ε(t)
(1)

where Fj(·) are the additive effects for j = 1, 2, 3, 4 covariates and ε(·) is
the unknown model error.
Thus, as preliminary steps, we need to determine 1) if the considered mete-
orological covariates support useful information to model the bikes rentals
and, if so, 2) if all of them are relevant or some can be excluded from the
model. This last would result in a problem dimension reduction.

2 Novel MDD global specification tests for additive
concurrent models

An additive concurrent model is a regression model where the response
Y ∈ R and p ≥ 1 covariates X = (X1, . . . , Xp) ∈ Rp are all functions of
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the same argument t ∈ Dt, and the influence is concurrent, simultaneous or
point-wise in the sense that X is assumed to only influence Y (t) through
its value X(t) = (X1(t), . . . , Xp(t)) ∈ Rp at time t by means of the relation

Y (t) = F1(t,X1(t)) + · · ·+ Fp(t,Xp(t)) + ε(t),

where Fj(·) are unknown functions collecting the E
[
Y (t)|Xj(t)

]
information

and ε(t) is the error of the model, which is assumed to have mean zero,
independent of X and with covariance function Ω(s, t) = cov (ε(s), ε(t)).
Thus, to assure the veracity of the model structure, nullity of main ef-
fects have to be rejected. For this purpose, taking D ⊂ {1, . . . , p}, we are
interested in elucidating whether the selected covariates are relevant in
the Y (t) explanation. Notice that we can consider the particular cases of
D = {1, . . . , p}, which translates in testing if all p covariates are relevant,
or D = {j} for some j = 1, . . . , p, allowing us to implement covariates
screening. As a result, a specification test can be performed by means of

H0 : E
[
Y (t)|Xj(t)

]
= E [Y (t)] a.s. ∀t ∈ Dt \ Nt and every j ∈ D

Ha : P
(
E
[
Y (t)|Xj(t)

]
̸= E [Y (t)]

)
> 0 for some t ∈ Vt and j ∈ D

(2)

where Dt \ Nt is the domain of t minus a null set Nt ⊂ Dt and Vt ⊂ Dt is
a positive measure set.
Making use of the innovative Martingale Divergence Difference (MDD)
coefficient of Shao and Zhang (2014), the specification test displayed in (2)
can be rewritten in terms of the MDD as

H0 :

∫
Dt

MDD2(Y (t)|Xj(t))dt = 0 a.s. for every j ∈ D

Ha : P
(∫

Dt

MDD2(Y (t)|Xj(t))dt ̸= 0

)
> 0 for some j ∈ D

(3)

In order to implement the previous test, an integrated statistic is consider
estimating MDD2(Y (t)|Xj(t)) for j = 1, . . . , p. This is based on

TD =

√(
n

2

)∑
j∈D

∫
Dt

MDD2
n(Y (t)|Xj(t))dt̂̃SD

where
̂̃SD is a suitable variance estimator of∑

j∈D

∫
Dt

MDD2
n(Y (t)|Xj(t))dt. We refer the reader to Zhang et al.

(2018) for more details.
Verifying some assumptions, the asymptotic normality of the TD statistic
is guaranteed under the null hypothesis and a consistent wild bootstrap
procedure is proposed to estimate its p-value in practice.
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It is relevant to highlight that other approaches have been proposed to
implement specification tests for the concurrent model in literature. Exam-
ples of these are the works of Wang et al. (2017) and Ghosal and Maity
(2022a) in the linear concurrent model formulation and the one of Kim
et al. (2018), which extends Ghosal and Maity (2022a) ideas to additive
effects. Nevertheless, all of them depend on some smoothing parameters:
selection of a proper bandwidth value or the number of considered basis
terms for effects representations, jointly with the error model structure es-
timation in Ghosal and Maity (2022a) and Kim et al. (2018). In contrast,
our procedure has the novelty that no smoothing parameters as well as no
structure assumption are required, resulting in a nonparametric approach
easier to implement in practice.

3 Conclusions

Assuming the model formulation displayed in (1) we carry out global and
partial versions of test (3) to determine which meteorological covariates
are relevant. The global test obtains a p-value = 0, which rejects the
null hypothesis of independence for usual significance levels. Then, con-
sidered covariates have an effect in causal rentals formulation. Regarding
to partial tests we obtain p-values of 0, 0, 0.007 and 0.001 for temperature
(temp), feels-like temperature (atemp), relative humidity (humidity) and
wind speed (windspeed), respectively. Thus, we can claim that all of them
have an impact on the number of casual rentals at significance levels as
the 1%. This last agrees with other studies as the one of Ghosal and Maity
(2022), where different covariates are selected by their considered penalties.
In an overview of their results, each covariate is selected at least two times
over the five considered procedures. As a result, all of them seem to play
a relevant role separately. The difference between both approaches may be
because our test is able to detect causality, whereas the Ghosal and Maity
(2022b) study focuses on covariates selection in terms of minimizing model
residuals in the estimation process. Then, some relevant covariates may be
excluded from the model because collinearity effects or due to the fact that
their inclusion does not contribute too much in residuals reduction. As a
result, our tests provide a different covariates screening point of view.
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Abstract: Covariance models for multivariate normal data must ensure the
positive definiteness of the covariance matrix. Computational scalability for han-
dling large samples is further desirable. We propose flexible covariance modelling
by reparameterising the covariance matrix according to two different approaches,
namely the matrix logarithm and the modified Cholesky decomposition. The per-
formances of the proposed additive covariance models (ACM) are compared on
an electricity load modelling application.

Keywords: Matrix logarithm; Modified Cholesky decomposition; Multivariate
electricity load forecasting; Penalised likelihood; Smoothing covariance modelling.

1 Introduction

Covariance models for multivariate normal data assume a specific form of
the d × d covariance matrix Σ of the response vector of interest, consid-
ering a functional dependence on some available covariates. The positive
definiteness of Σ must be ensured, and it has been tackled in various ways
in the literature. Two important methods are the matrix logarithm (logM)
of Σ (Chiu et al., 1996) and the modified Cholesky decomposition (MCD)
of the precision matrix Σ−1(Pourahmadi, 1999). Here we propose to extend
these two approaches, allowing for the elements of the covariance matrix to
vary smoothly with the covariates. Computational performances and model
comparisons are illustrated on electricity load data.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Additive mean and covariance matrix models

Consider independent d-dimensional response vectors yi = (y1i , . . . , y
d
i )

T,
i = 1, . . . , n, normally distributed with mean vector µi and covariance
matrix Σi. Let ηi = (η1i , . . . , η

q
i )

T, q = d + d(d + 1)/2, be the i-th linear
predictor vector, used to model both the mean vector and the covariance
matrix. The mean vector µi has elements µk

i = ηki , k = 1, . . . , d, and the
unconstrained elements of a suitable parameterisation of Σi, or of Σ−1

i ,
are ηki , k = d + 1, . . . , q. That is, the non-redundant elements of logΣi,
under the logM approach, and the diagonal elements of logD2

i and the off-
diagonal nonzero elements of Ti, under the MCD approach, are modelled
via the linear predictors. In the latter approach

Σ−1
i = T⊤

i D
−2
i Ti ,

whereTi = DiC
−1
i , withCi from the Cholesky decompositionΣi = CiC

⊤
i ,

and Di is the diagonal matrix containing the diagonal elements of Ci.
The log-likelihood for the i-th observation, up to an additive constant, is

ℓ(ηi) = −1

2
log |Σi| −

1

2
(yi − µi)

⊤Σ−1
i (yi − µi) .

The k-th element of the i-th linear predictor is

ηki = Zk
i γ

k +
∑
j

gkj (x
j
i ) , (1)

with Zk
i the i-th row of a parametric model matrix, γk a regression pa-

rameter vector, and gkj a smooth function of covariate xj . Each gkj can be
represented using a reduced rank spline basis, with an associated quadratic
penalty. Hence, each linear predictor can be written as ηki = Xk

i β
k, with

Xk
i = (Xk

i1, . . . , X
k
ipk

) and βk = (βk
1 , . . . , β

k
pk
)T; here Xk

i1 is equal to one.

The estimation of β = (β1T

, . . . ,βqT
)T is carried out by Newton optimisa-

tion of the penalised log-likelihood, that is

β̂ = argmax
β

{
ℓ(β)− 1

2

M∑
j=1

λjβ
⊤Sjβ

}
, (2)

for fixed M-dimensional smoothing parameter vector λ, with λj ∈ IR+ and
where the Sj are matrix of known coefficients. The generalised Fellner-
Schall method (Wood and Fasiolo, 2017) is used to select λ by maximising
a Laplace approximation to the marginal likelihood. See also Wood (2017).
An approximate Bayesian framework can be used for inference. Indeed, note
that β̂ is the posterior mode for β, and that the generalized ridge penalty
in (2) corresponds to the improper prior β ∼ N (0,S−

λ ), with S−
λ being

a suitable pseudo-inverse of Sλ =
∑

j λjS
j . For fixed λ and in the large

173



Gioia et al.

sample limit we have that β|y ∼ N (β̂, (Ĥ + Sλ)
−1), where Ĥ is the ob-

served information matrix of the log-likelihood at β̂. With this asymptotic
approximation we can obtain (possibly by simulation) Bayesian credible
intervals for any function of β.

3 Multivariate electricity load modelling

Data from the electricity load forecasting track of the GEFCom2014 chal-
lenge (Hong et al., 2016) are considered for illustrative purposes. The hourly
load (in MW) for an undisclosed US utility and the temperature data span
the period from 2005/01/02 to 2011/11/27. Hourly loads from 5 p.m. to
10 p.m on a daily basis are used as response variables. Hence, the number
of variables is d = 6, while the number of observations is n = 2513. The
covariates include the day of the year (x1), the day of the week (x2), the
temperature (x3), and the hourly loads of the previous day (x4). The mean
model is specified as in (1), with two smooth terms for x1 and x3, where
gk1 and gk3 are smooth functions, built using ten basis functions. Parametric
linear effects are used for x2 and x4.
The covariance models are specified by considering a fixed covariance struc-
ture (Fixed) and an additive covariance model (ACM). In the latter, all the
elements of the logM and MCD parameterisations are modelled as in (1),
with a smooth term for x1 and a parametric component for x2; here the
total number of linear predictors is q = 27. Under the MCD approach, an
order-1 ante-dependence model (ACM AD-1) is also considered (see Pourah-
madi, 1999), achieving a reduction in the number of parameters.
The times (in minutes) taken for one fit, by varying d and according to
the ACM specification, are reported in Table 1. It is clear that MCD out-
performs logM, which is due to the analytical expression of the likelihood
quantities, including the Hessian of the log-likelihood function with respect
to the linear predictors. Indeed, such Hessian involves multiple summations
in the logM approach, due to the computation of the matrix exponential
derivatives. The model fit was carried out using a laptop computer with an
Intel Core i5-10210U processor and 16 GB of RAM.

TABLE 1. Estimation times considering the ACM specification (in minutes).

d dim(β) MCD logM

2 100 0.06 0.14
3 174 0.26 1.38
4 264 0.41 6.77
5 370 1.39 32.84
6 492 2.98 81.08
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The models are evaluated by considering the energy and logarithmic scores
and the forecasting metrics are compared by using the skill score (see Gneit-
ing and Raftery, 2007). A block bootstrap resampling of skill scores is used
to determine whether the forecasting metrics differ significantly at 0.05
level. A cross-validation procedure, known as evaluation on a rolling fore-
casting origin (see Hyndman and Athanasopoulos, 2021), is implemented.
In this respect, the origin of forecast rolls forward in time of 1 week starting
from 2011/01/01. Forecasting metrics and the significance of the difference
between scores are reported in Table 2. The ACM specification is prefer-
able to the fixed covariance structure model and the ACM - AD1 form is
comparable to the ACM one.

TABLE 2. Results for electricity load forecasting. Underline indicates that the
skill score relative to the ACM one is not significantly different from zero.

MCD logM

Model Energy Logarithmic Energy Logarithmic

Fixed 23.49 16.03 23.49 16.03
ACM AD - 1 22.97 15.73 – –
ACM 22.89 15.64 22.84 15.60

Variance(6 p.m.)

1 100 200 300

200

400

600

Correlation(6 p.m., 8 p.m.)

1 100 200 300

0.75

0.80

0.85

0.90

0.95

1.00

Day of the year

FIGURE 1. Results for the ACM specification using MCD (red) and logM (blue).
Fitted variances (in MW2) and correlations, with 95% credible intervals, by day
of the year and for Mondays. The black dashed lines correspond to the Fixed

model fit.

A comparison between the unconstrained MCD and logM parameterisa-
tions on the fitted variances (in MW2) and correlations is shown in Figure
1. The slight differences between the MCD and logM fits are due to the
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different parameterisations used. It seems appropriate to consider a varying
effect of the day of the year on the variances and the correlations, as the
deviations from the fixed covariance model fit are apparent.
Figure 2 reports the fitted variances and correlations for the ACM specifi-
cation using the MCD approach and by considering three different hours
(6 p.m., 7 p.m., and 8 p.m.). The variances show seasonal peaks due to
the heating and cooling effects related to the winter and summer peri-
ods, respectively. In addition, it is apparent the drop in the variances of
the summer peak as the time approaches the night hours. The troughs of
the correlations correspond to the late winter and autumn periods, char-
acterized by mild temperatures. The correlations decrease as the lag time
increase, especially during the correlation troughs. The patterns in Figure
2 are shifted vertically depending on the day of the week.

6 p.m. 7 p.m. 8 p.m.

V
ariances

1 100 200 300 1 100 200 300 1 100 200 300

200

400

600

(6 p.m., 7 p.m.) (6 p.m., 8 p.m.) (7 p.m., 8 p.m.)

C
orrelations

1 100 200 300 1 100 200 300 1 100 200 300

0.80

0.85

0.90

0.95

1.00

Day of the year

FIGURE 2. Results for the ACM specification using MCD. Fitted variances (in
MW2) and correlations by day of the year (red lines for Monday, with 95%
credible intervals; grey dashed lines for the other days of the week). The black
dashed lines correspond to the Fixed model fit.
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4 Conclusion and ongoing work

Additive covariance models represent a useful class of statistical models,
rarely used in practice due to the intrinsic challenges involved in their
adoption. The results illustrated here suggest that scalable implementation
of the MCD approach might be more promising than that of the logM
approach. For a more widespread usage of such tools in applications, some
progress in public available software is needed. To this end, a R package
implementing the two methods is currently under development.
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Abstract: In heart failure, medical decisions with regard to pharmacological
therapies are very complex due to the heterogeneity in subjects’ profiles. In this
work, we propose a flexible parametric multi-state model to represent the health
and treatment path of heart failure patients over time. From this model, we are
able to obtain an estimate of the effect of discontinuing the treatment according
to different subjects’ health status over time.

Keywords: Multi-state model; Real-world data; Heart failure

1 Introduction

Treatment of Heart Failure relies on several life-saving pharmacological
therapies. Among them, mineralocorticoid receptor antagonists (MRAs)
are one of the cornerstone of therapy in heart failure, yet is one that is
most often discontinued by cardiologists out of fear of adverse events, e.g.
alteration of potassium (Komajda et al. (2016); Maggioni et al. (2013)).
However, there is no clear evidence regarding when side effects overcome
benefits in terms of the risk of hospitalisation or death. Entangling the
relationship between the discontinuation of MRAs and the risk of adverse
events is a non-trivial statistical problem: the longitudinal nature of these
processes can’t be uncoupled with patient’s disease progression as well as
potassium behaviour over time. Therefore, in light of the above, we propose

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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a multi-state approach to model patients’ health and treatment status over
time jointly with the time-to-event processes i.e. repeated hospitalisations
and death. The aim of this work is to extend the model by Ieva et al.(2017)
considering different out-of-hospital states to represent possible combina-
tions of patients’ clinical phenotypes, potassium dynamics, and treatment
with MRAs over time. From this model, we are able to obtain an estimate
of the effect of discontinuing vs. continuing treatment with MRAs for each
different health status with respect to the risk of hospitalisation.

2 Dataset

Data was obtained by the interrogation of the administrative regional
health database of the Friuli Venezia Giulia Region in the Northern part
of Italy, integrated with the Outpatient and Inpatient Clinic E-chart (Car-
dionet) (Iorio et al., (2019)). The cohort was followed from the date of
first purchase of MRAs, until the time of death or the administrative study
closure date, i.e. 31/12/20. For this specific study, data concerning demo-
graphic, clinical and instrumental variables, repeated blood tests containing
the potassium measurements, all drug purchases and all dates of hospital-
isation collected during the observation period have been considered.

3 Methods

3.1 Multi-state model structure

States considered in the model consists of out-of-hospital states, state in-
hospital and an absorbing state i.e. death. Out-of-hospital states, O, are
defined from the clinical phenotype, the treatment status and the potas-
sium status. Two possible treatment status, T = {′On′,′ Off ′}, have been
defined from subjects’ drug purchases data. The clinical phenotype have
been defined using subjects’ clinical characteristics collected during the
follow-up. We denote possible phenotypes with P = {p1, ..., prp}. Finally,
the potassium status has been defined according to whether the biomarker
shows a stable or fluctuating behaviour i.e. K = {′Stable′,′ Fluctuating′}.
The presence of oscillations from longitudinal potassium measurements
data can be determined according to the methodology based on wavelet
filtering proposed by Gregorio et al. (2022). Thus, O = P × T × K and
there are a total of ro = 2 × 2 × rp out-of hospital states. We denote by
λqs, q, s = 1, ...r the set of transition intensities i.e. the instantaneous risk
of moving from state q to state s. We use a semi-Markov model so that the
intensities depends on the process history only through the time spent in
the current state and other patient’s characteristics contained in the vector
of covariates x.
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3.2 Estimation of the IN-hospital transitions intensities

We are interested in studying the effect of discontinuing treatment accord-
ing to subjects’ different health status on the risk of hospitalisation. For
this reason, we model the transition intensities from the out-of-hospital
states to the in-hospital state i.e. IN-hospital transitions:

λqIN
i (u) = λqIN

0 (u)exp{βTxi} (1)

where q : 1, ..., ro and u is the time since the entry in the current state.
The model is a flexible parametric model (Royston and Parmar (2017)) in
which baseline transition intensities are modelled with natural cubic splines
with k internal knots.

3.3 Personalised effect of the discontinuation of the treatment

To compare the hazard between the two treatment status, among patients
belonging to the same phenotype and potassium status, we can define the
ratio between the IN-hospital transitions intensities as follows:

HRT
p×k(u) =

λ
(p×k×′Off ′)IN
0 (u)exp{βTxi}
λ
(p×k×′On′)IN
0 (u)exp{βTxi}

=
λ
(p×k×′Off ′)IN
0 (u)

λ
(p×k×′On′)IN
0 (u)

(2)

where (p× k×′ Off ′) and (p× k×′ On′) denote the out-of-hospital states
with T =′ Off ′ and T =′ On′ respectively.

FIGURE 1. Estimated hazard ratio curves (ĤR
T
p×k(u)) for the risk of hospi-

talization according to clinical phenotypes and potassium status. Colored areas
represent 95% CIs.
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4 Results

In the analysis, were considered 1695 subjects with a median observa-
tion period of 3 years (IQR: 1.5-5). Age, left-ventricular ejection fraction
(LVEF), New York Heart Class (N.Y.H.A.), number of non-cardiac comor-
bidities and Chronic Kidney Disease (CKD) were used to define 18 different
clinical phenotypes. The R package AdhereR (Dima and Dendiu (2017)) was
used to derive the treatment status over time from subjects’ drug purchase
data. The model for the IN-hospital transition intensities was estimated
using the R package flexsurv (Jackson (2017)). Using the AIC criteria, 1
was chosen as the best number of internal knots for the baseline intensities
of the model and sex was considered as covariate. The estimated hazard
ratios of discontinuing the treatment with MRAs are shown in Figure 1.

5 Conclusions

In this work, we propose a novel method to estimate the personalized effect
of discontinuing a treatment according to subjects’ time-varying informa-
tion from real-world data. From the results obtained, we observe that the
effect of discontinuing the treatment varies greatly according to different
clinical phenotypes and potassium status suggesting that new quantitative
decision tools may be useful to guide medical decisions in heart failure.

Acknowledgments: This work was supported by VIFOR Pharma. The
authors also thank the Trieste Observatory of Cardiovascular Disease, Dr.
Andrea Di Lenarda and Dr.Arjuna Scagnetto.
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Abstract: In Bayesian statistics one typically relies on Markov chain Monte
Carlo (MCMC) methods to extract information from (potentially complex)
posterior distributions. Existing MCMC samplers are straightforward to im-
plement in practical applications and are therefore often considered as the
best companion for Bayesian inference. The stochastic and iterative nature of
these algorithms makes them computationally expensive and even with modern
multi-core machines, the waiting time for drawing posterior samples required
for inference can span several hours or even days depending on the model
complexity. Laplacian-P-splines (LPS) is a new “sampling-free” methodology
for approximate Bayesian inference that provides a lightning fast alternative
to costly MCMC samplers. Laplace approximations to selected conditional
posterior distributions and Bayesian penalized B-splines are the two main forces
making LPS a fast and flexible modeling tool. The presentation is split in two
parts in order to highlight the strength of LPS in recent implementations within
the framework of epidemiological models (Part I) and cure survival models (Part
II).

Part I: Estimation of the time-varying reproduction number

The instantaneous reproduction number Rt (defined as the expected number
of secondary cases generated by an infected individual at time t) is a statistic
that plays a central role in infectious disease epidemiology. It characterizes the
global transmission potential of a pathogen during an epidemic outbreak in a
single number and is therefore an interesting summary measure to assist policy
makers in the management of a public health crisis. EpiLPS (Epidemiological

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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modeling with Laplacian-P-Splines) is a new flexible Bayesian tool developed by
Gressani et al. (2021a) that provides smooth estimates of the epidemic curve and
Rt based on case incidence data and the serial interval distribution (the time
elapsed between the onset of symptoms in an infector and the onset of symptoms
in the secondary cases generated by that infector). The proposed methodology
builds upon P-splines smoothers (Eilers and Marx, 1996) to approximate the
mean number of incidence cases by assuming a negative binomial distribution
for the daily case counts and relies on Laplace approximations to the conditional
posterior of the spline parameters to speed up the inference process. The
estimated spline parameters are then nested within a (discrete) renewal equation
model (Fraser, 2007; Wallinga and Lipsitch, 2007) to derive daily estimates of
the reproduction number and associated credible intervals. A key argument
that makes EpiLPS an attractive tool to quantify the time-varying reproduction
number is the absence of any sliding window assumption. The popular bench-
mark method of Cori et al. (2013) requires the specification of a time window
to estimate Rt that implies a trade-off between potential oversmoothing (with
a “large” time window) and undersmoothing (with a “narrow” time window).
EpiLPS is not facing such a trade-off, as P-splines deal with smoothing internally,
i.e. within the model. Furthermore, EpiLPS is designed to give the user a choice
between (1) a fully sampling-free approach to infer Rt based on a maximum a
posteriori calibration of the model hyperparameters and (2) a gradient-based
MCMC algorithm based on the Langevin diffusion for efficient sampling of the
posterior distribution. Extensive simulation results show that the Rt estimate
computed by EpiLPS exhibits excellent statistical performance with a relatively
low computational cost. To conclude the first part of the talk, EpiLPS is applied
on historical outbreak datasets and on the recent SARS-CoV-2 pandemic.
Strengths and limitations of EpiLPS are briefly summarized and the use of
LPS to model Rt under misreported data (Gressani et al. 2021b) is discussed.
Finally, we give an overview of the associated R package (Gressani 2021c) and
the user-friendly website https://www.epilps.com dedicated to the EpiLPS tool.

Part II: Laplacian-P-splines in mixture cure survival models

The mixture cure model for analyzing survival data is characterized by
the assumption that the population under study is divided into a group of
subjects who will experience the event of interest over some finite time horizon
and another group of cured subjects who will never experience the event
irrespective of the duration of follow-up. When using the Bayesian paradigm
for inference in survival models with a cure fraction, it is common practice
to rely on MCMC methods to sample from posterior distributions. Although
computationally feasible, the iterative nature of MCMC often implies long
sampling times to explore the target space with chains that may suffer from slow
convergence and poor mixing. Furthermore, extra efforts have to be invested in
diagnostic checks to monitor the reliability of the generated posterior samples.
A sampling-free strategy for fast and flexible Bayesian inference in the mixture
cure model is suggested (see Figure 1) by combining Laplace approximations and
penalized B-splines (Gressani et al. 2022). A logistic regression model is assumed
for the cure proportion and a Cox proportional hazards model with a P-spline
approximated baseline hazard is used to specify the conditional survival function
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of susceptible subjects. Laplace approximations to the posterior conditional
latent vector are based on analytical formulas for the gradient and Hessian
of the log-likelihood, resulting in a substantial speed up in approximating
posterior distributions. The spline specification yields smooth estimates of
survival curves and functions of latent variables together with their associated
credible interval are estimated in seconds. A fully stochastic algorithm based on
a Metropolis-Langevin-within-Gibbs sampler is also suggested as an alternative
to the proposed Laplacian-P-splines mixture cure (LPSMC) methodology. The
statistical performance and computational efficiency of LPSMC is assessed in
a simulation study. Results show that LPSMC is an appealing alternative to
MCMC for approximate Bayesian inference in standard mixture cure models.
Finally, the novel LPSMC approach is illustrated on real survival data.

FIGURE 1. The Laplacian-P-splines methodology for Bayesian inference in mix-
ture cure survival models.

Keywords: Laplace approximation; Approximate Bayesian inference; Epidemi-
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ology; Survival analysis; Computational methods.
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Abstract: In this work we construct a data-driven allocation algorithm for basic
joint models for longitudinal and time-to-event data by applying recent develop-
ments from gradient boosting for distributional regression. Instead of specifying
beforehand which covariate has an influence on which part of the joint model,
the algorithm allocates the covariates to the appropriate sub-model.
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1 Motivation

Modelling longitudinal data and risk for events separately, even though the
underlying processes are related to each other, leads to loss of information
and bias. Hence, the popularity of joint models for longitudinal and time-
to-event data (Wulfsohn and Tsiatis, 1997) has grown rapidly in the last
few decades. The basic idea of joint modelling is to formulate sub-models
for each of the outcomes and estimate them jointly in one single frame-
work. This rises the important question to which of the given sub-models
a candidate variable should be assigned to, which researchers usually have
to decide based on background knowledge. Gradient boosting, on the other
hand, is a statistical learning method that has the inherent ability to select
variables and estimate them simultaneously. We use gradient boosting tech-
niques for distributional regression (Thomas et al., 2018) in order to extend
existing boosting approaches for joint models (Waldmann et al., 2017) to
an allocation routine which is capable of assigning possibly high numbers of
predictor effects to the given sub-models specified for one joint model. The

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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newly designed routine is further equipped with recent developments from
the field of statistical boosting including a novel correction for the random
effects estimates (Griesbach et al., 2021), adaptive step-lengths (Zhang et
al., 2022) and a fast tuning procedure based on probing (Thomas et al.,
2017).

2 Methods

2.1 Joint Modelling

For longitudinal outcome y, a joint model consists of one longitudinal sub-
model

y = ηlong(xlong, t) + ε, ε ∼ N (0, σ2),

where y is modelled by some longitudinal predictor ηlong depending on a
set of longitudinal covariates xlong and time t itself. On the other hand,
the time-to-event outcome (T, δ) is modelled by

λ(t) = λ0(t) exp
{
ηsurv(xsurv) + αηlong(xlong, t)

}
,

where each individuals hazard λ(t) consists of a baseline hazard λ0(t), a
survival predictor ηsurv depending on additional baseline survival covariates
xsurv and, most importantly, the longitudinal predictor reappearing in the
formulation of the hazard function. This time scaled by the association
parameter α which quantifies the impact of the longitudinal model on the
time-to-event outcome. Let ϑ denote the collection of parameters specifying
the two sub-models. Given some necessary independency assumptions, one
can derive the joint likelihood L(ϑ|y,T , δ) based on the sub-models which
then is to be maximized with respect to ϑ for regular likelihood inference.

2.2 Boosting Joint Models

Model-based gradient boosting is an iterative and component-wise fitting
procedure for various classes of regression models. Key concept is that in
each iteration the current gradient u, often resembling some kind of resid-
uals, of a pre-chosen loss function ρ is fitted to every single candidate
variable. Only the best performing variable of each iteration gets selected
into the model by a tiny amount enabling variable selection and the pos-
sibility to estimate models with potentially high numbers of covariates.
This procedure can be adapted to joint models in the following way: First,
choose the loss ρ = −L as the negative joint likelihood and a total number
of iterations mstop and then let the boosting procedure cycle through the
single predictors of the sub-models in each iteration where only the overall
best-performing covariate gets allocated to its corresponding sub-model. In
a very simple manner, the mechanism can be summarized as follows:
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� initialize predictors η̂
[0]
long, η̂

[0]
surv and α̂[0]

for m = 1, . . . ,mstop do

� longitudinal boosting step

– Fit all variables xr, r = 1, . . . , p, to the longitudinal gradient

u
[m]
long = y − η̂

[m−1]
long

– Find the best performing variable x∗
long

� survival boosting step

– Fit all variables xr, r = 1, . . . , p, to the survival gradient u
[m]
surv =

δ −
∫ T

0
λ̂[m−1](t)dt

– Find the best performing variable x∗
surv

� allocation step

– find x∗ ∈ {x∗
long,x

∗
surv} yielding the best improvement of ρ.

– allocate x∗ to its sub-model obtaining η̂
[m]
long and η̂

[m]
surv

– update α̂[m] by optimizing ρ w.r.t. the current fit

end for

3 Showcase

We showcase the algorithm briefly sketched in the previous section by sim-
ulating and estimating a joint model with linear effects in both sub-models
as well as a real world appilcation.

3.1 Simulation

Set ηlong(xlong) = xlongβlong and ηsurv(xsurv) = xsurvβsurv with coefficient
vectors

βT
long = (1, 2, 1, 2), βT

surv = (1, 2, 1, 2), βT
noise = (0, 0, 0).

This means there are eleven candidate variables in total. Four have a linear
influence on the longitudinal outcome and four have a linear influence on
the time-to-event outcome. The remaining three variables are noise vari-
ables which are non-informative for any of the two predictors. In this case,
variable allocation simplifies to the question in which coefficient vector the
effect of a given covariate should appear in: either in βlong or in βsurv (or
neither of the two). Figure 1 depicts the coefficient progression in each sub-
model of the described scenario. As one can see, all informative variables
get assigned to the correct sub-models. Due to the tuning of the algorithm,
the procedure stops shortly after 160 iterations leading to variable selec-
tion. However, one noise variable is falsely selected into the longitudinal
sub-model after 60 iterations.
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FIGURE 1. Progression of longitudinal and survival coefficient paths for cor-
related covariates. All informative variables have been correctly allocated. One
noise variable was falsely selected into ηlong.

3.2 AIDS Data

The 1994 AIDS data (Abrams et al., 1994) aimed at comparing two an-
tiretroviral drugs based on a collective of HIV positive patients. It includes
1405 longitudinal observations of 467 individuals from which 188 died dur-
ing the course of the study. Apart from the CD4 cell count as longitudinal
outcome, death as time-to-event outcome and time t itself, the four ad-
ditional baseline variables drug (treatment group), gender, AZT (indicator
whether a previous AZT therapy failed) and AIDS (indicator whether AIDS
is diagnosed) are observed. Figure 2 depicts the coefficient paths computed
by the JMalct algorithm and the corresponding allocation process. The
variable AIDS is selected into the longitudinal sub-model right away and
frequently updated. This is not surprising, as diagnosis of AIDS is by def-
inition linked to the CD4 cell count. drug and gender are also allocated
to the longitudinal sub-model by a smaller amount whereas AZT is selected
into the survival predictor indicating an increased risk of death for patients
with failed AZT therapy.

4 Discussion

By applying established methods from the field of gradient boosting for
distributional regression, it is possible to construct a fast-performing and
data-driven allocation routine for joint models which selects and allocates
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FIGURE 2. Coefficient progression in both sub-models for AIDS data. The vari-
able AZT has been assigned to ηsurv, the rest to ηlong.

predictor effects into the single sub-models. While the allocation works rea-
sonably well, estimates experience some shrinkage, which is well-known for
regularization methods. Possible tasks for future research include extension
of the concept to more general and flexible joint models in order to make
it applicable to a broader variety of real world situations.
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Abstract: Many applications of image classification are prone to labeling uncer-
tainty. To generate suitable datasets, images are often assessed by human experts
and labeled according to their evaluation. This can result in ambiguities and er-
rors, which affect any kind of subsequent machine learning model. In this work,
we aim to quantify the uncertainty of the labelers in the context of remote sens-
ing and classification of satellite images. We do so by applying classical statistical
technology and exhibit different sources of ambiguity during the labeling process.

Keywords: Uncertainty; Multinomial Mixture Models; EM Algorithm.

1 Problem Description and Data

Today, machine learning is increasingly used for the classification of images,
with applications in medical image analysis, face recognition and many
more. In this work, we focus on satellite images and their use to classify the
world into Local Climate Zones (LCZ), see Figure 1. This concept proposed
in Steward (2011) is a general standard in remote sensing and assumes that
the structure of landscape influences the local climate. Massive effort has
been spent in developing algorithms that transform satellite images into
a LCZ map (Qiu et al. 2019). Thereby the algorithms are based on and
require labeled data for training.
We here focus on this additional layer of uncertainty, which is often omit-
ted, namely that the ground truth remains unknown. In our case, this
uncertainty is analysed based on the earth observation benchmark data set

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Representation of the 17 LCZs as Sentinel-1 (first row), Sentinel-2
(second row) and Google Maps images (third row).

So2Sat LCZ42, see Zhu et al. (2020). It comprises satellite images that were
manually labeled by experts into LCZs. All in all, 159581 images from 9
citys were categorised into 17 classes by 11 experts. This process is time
consuming and not without ambiguities. We aim to model the uncertainty
of the experts about the images by applying classical statistical technology.

2 Modelling Annotation Uncertainty

To achieve the goal of exploring labeling uncertainty, we look at the ex-
perts’ votes. Each image patch i, i = 1, ...n is assessed by a set of experts
indexed with j, j = 1, ..., J and classified into the LCZ k where k = 1, ...,K.

The corresponding vote of the expert is denoted by V
(i)
j ∈ {1, . . . ,K}.

Rewriting the vote information as indicator vector allows to accumulate

the votes into the data points Y (i) = (Y
(i)
1 , ..., Y

(i)
K ). We assume further

that each image comes from a single true class (=ground truth), which is
a reasonable assumption based on the clustered data structure described
above. Hence we assume that there is no ambiguity of the image class, but
apparently there are ambiguities in the voters’ opinion about this class.
We denote with Z(i) ∈ {1, . . . ,K} the true class of image i, which appar-
ently remains unknown. Our intention is now to get information on Z(i)

given the voters’ distribution Y (i). We will therefore apply Bayesian rea-
soning, which requires to formulate a distribution framework. For the true
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classes, we assume a multinomial prior, i.e. Z(i) ∼ Multi(π, 1), i.i.d. with
π = (π1, ..., πK). Given the true class we further assume that the labelers’
vote also follows a multinomial distribution, i.e.

Y (i)|Z(i) ∼ Multi(θZ(i) , J). (1)

We collect the coefficients into the confusion matrix Θ = (θpk, p, k =
1, . . .K). Given that the true classes are unobserved, we are in the frame-
work of mixture models and we obtain the likelihood contribution of the ith
image by summing over all classes. Apparently, this is getting clumsy, so
that we apply the EM algorithm, or to be more precise, a stochastic version
of it as proposed by Celeux et al. (1996). A welcome advantage of SEM is
that we can directly quantify uncertainty of the estimates, in the form of
estimation variance of the parameters, primarily of the (mis)classification
matrix Θ, see Rubin (1976).
Like in every mixture model, the numbering of the resulting classes does
not match the original numbering of the LCZs, also referred to as label
switching. We construct the permutation σ() of the cluster labels C to the
voter labels L such that its inverse fulfills σ−1(k) = arg maxl

(
P (Z(i) =

l|V (i) = k)
)
. This rule is applied repeatedly to get a unique definition.

3 Sources of uncertainty in the votes

We are now in the position to approach different questions related to hu-
man annotation of satellite images which cover various aspects of label
uncertainty.
The first question we want to answer is: how distinguishable are the LCZs
in general? Due to the definition of the LCZs, it is obvious that some classes
are harder to distinguish than others. The parameter of main interest is the
estimated confusion matrix Θ̂ shown in Figure 2. Looking at the diagonal
entries, most classes seem to be well separable, whereas 1 and 7 could rarely
be detected correctly.
Generally, our results depend on the input votes as the algorithm can only
detect classes where the data basis is sufficient. Furthermore, it should be
mentioned here our true confusion matrix is subject to the implemented la-
bel switching process. As the multinomial mixture model produces ”mean-
ingless” clusters, that have to be assigned to LCZs afterwards, the resulting
estimates and their interpretation are based on the assignment strategy,
which might not be unambiguous. Generally, however, we obtain inter-
pretable insight in the inevitable ambiguity when classifying LCZs.
Second, we pose the question, whether experts are biased or homogeneous
in terms of their voting behaviour. The described model allows to assess
the impact of each individual experts and their heterogeneity. If experts
were homogeneous, their voting behaviour does not differ, and dropping
the votes of one expert at a time should not change the final estimated

195



Hechinger

1 2 3 4 5 6 7 8 9 10 A B C D E F G

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.894 0.000 0.071 0.000 0.000 0.000 0.000 0.035 0.000 0.000

2 0.000 0.954 0.013 0.025 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.137 0.446 0.378 0.015 0.010 0.013 0.000

4 0.006 0.028 0.000 0.259 0.705 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.136 0.019 0.000 0.733 0.111 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6 0.000 0.002 0.089 0.000 0.007 0.891 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999

8 0.000 0.003 0.001 0.001 0.001 0.000 0.000 0.994 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.153 0.004 0.005 0.621 0.000 0.000 0.000 0.000 0.216 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.096 0.000 0.890 0.000 0.000 0.000 0.003 0.011 0.000 0.000

A 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.988 0.010 0.001 0.000 0.000 0.000 0.000

B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.005 0.940 0.049 0.005 0.000 0.000 0.000

C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.104 0.212 0.666 0.000 0.018 0.000

D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.996 0.000 0.003 0.000

E 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.033 0.000 0.000 0.000 0.000 0.006 0.000 0.951 0.008 0.001

F 0.253 0.021 0.000 0.068 0.000 0.000 0.000 0.005 0.000 0.002 0.000 0.000 0.021 0.002 0.100 0.527 0.000

G 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999

0.002 0.060 0.011 0.009 0.058 0.099 0.000 0.053 0.009 0.016 0.137 0.070 0.010 0.276 0.009 0.005 0.1744

0.014

0.055

0.012

0.028

0.048

0.102

0.019

0.039

0.013

0.018

0.138

0.063

0.011

0.268

0.008

0.008

0.156

pr
io

r p
ro

ba
bi

lit
y

relative frequency of votes

FIGURE 2. The matrix shows the true confusion of the voted (columns) with
the true classes (rows), along with the estimated prior probabilities (right) and
the relative vote frequency (bottom).

distribution. The parameter of interest here are therefore τ̂
(i)
l or τ̂

(i)
(−j)l,

where the bracketed index −j refers to the excluded voter j. We use the
modified Chi-squared measure and compare the observed votes of expert j

against the expected counts. The latter is thereby given by τ̂
(i)
(−j)k. To assess

the magnitudes of the resulting measures, we make use of a simulation based
procedure, that resembles a parametric bootstrap approach. We conclude
that for 6 out of 11 experts the observed votes match the expected votings,
while 5 voters seem to be more heterogeneous.
Depending on the application at hand, expert heterogeneity is often not
only accepted but also desired. In this particular case, experts received the
same training on how to conduct classification of satellite images and are
generally assumed to produce homogeneous votings.
Third, we want to know whether the voting behaviour is influenced by geo-
graphic differences. The polygons used for the voting procedure come from
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9 different European cities, which are known to be quite diverse in terms
of structure and architecture. While this might be intended to cover all
LCZs as good as possible, it complicates the assessment of the images. The
question is whether earth observation experts have difficulties in assign-
ing certain images to certain climate zones, depending on the respective
region. The crucial aspects here are the misclassification probability ma-
trices Θ(s) for s = {1, ..., S} denoting the region/city. However, one has to
note here that the voting distribution shown in the bottom plot of Figure 2
depends on the initial draw of images or polygons in each city. The pursued
strategy might lead to imbalanced labels and therefore a bias in the vot-
ing probabilities. We here are however interested in the confusion matrix
and whether this matrix differs in the different cities. We construct a test
statistic and test the null hypothesis of equal confusion matrices for citys s
and s′. We repeat this procedure and construct pairwise tests for all cities.
On a significant level of 0.05, we can assume that the confusion matrices
are different for 22 of 34 city pairs.

4 Conclusion

The paper demonstrates that labeling of images is subject to error, mis-
classification and heterogeneity of labelers. The results are relevant for all
applications where image classification is pursued and image labeling is sub-
ject to humans. It is important to note that error and uncertainty in the la-
beling process might stem from different sources and is multi-dimensional,
as we showed in Section 3. In the context of classifying satellite images
into climate zones, we were able to detect three main sources of label un-
certainty. These can be analyzed based on the assumption that a latent
ground truth label exists, on which the labelers condition their assessment.
As a next step, it would be useful to include the uncertainty into the ma-
chine learning process as well. The labeling process only serves as a prepro-
cessing step of the data at hand and produces a labeled training data. The
results obtained by analyzing the sources of labeling uncertainty and being
able to quantify them could create possibilities to improve and stabilize
machine learning processes in terms of overall uncertainty.
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Abstract: In this work we present a novel methodology to estimate a variable
domain functional regression model assuming the basis representation of both,
the functional coefficient and the functional data. The model’s coefficients are
estimated via Penalized Quasi-likelihood using the mixed model representation
of a penalized spline. We test our methodology in a simulation study and apply
it to a data set of COPD patients.

Keywords: Variable domain functional regression model, basis representation,
P-spline, COPD.

1 Introduction

Variable domain functional regression models are an extension of scalar-
on-function models where the functional predictor is observed on a grid
of different length for each subject. Such type of data have become very
common recently, specially due to the wide-spread use of wearable devices
and their ability to collect data that can improve, for example, health
diagnostics. Our proposal is inspired by the functional regression model
proposed in Gellar et al. (2014) and it is motivated by the assumption that
the functional covariate is smooth but observed with error in practice. To
deal with this problem, a two-dimensional anisotropic penalty is considered
to provide a good estimation of the proposed model. The good performance
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of the proposed approach has been shown on a simulation study and a real
data set.

2 Methodology

Given the following sample data: {Yi,Ci, Xi(t)}, i = 1, . . . , N, t ∈ [1, Ti],
where Ci are the non-functional covariates, Xi(t) is the functional covari-
ate and Ti is the length of the domain of the variable t for the subject i that
satisfies Ti ≤ Ti+1. The response variable Yi follows an exponential fam-
ily distribution with mean µi. Gellar et al. (2014) proposed the following
generalized variable domain functional regression model:

ηi = g(µi) = α+Ciγ +
1

Ti

Ti∫
1

Xi(t)β(t, Ti) dt, t ∈ [1, Ti]. (1)

Their approach was based on a varying coefficient model, we propose an
alternative approach for the estimation of the model assuming the basis
representation of both, the functional coefficient and the functional data.
Therefore, our first step is to make a basis representation of the functional
variable Xi(t) and the bi-dimensional functional coefficient β(t, Ti):

Xi(t) =

p∑
j=1

aijϕij(t) = ϕiai,

β(t, Ti) =

q∑
l=1

r∑
k=1

blkφil(t)ψik(Ti) = (φi ⊗ψi)b =M ib,

with (ϕi)Ti×p, (φi)Ti×q, (ψi)1×r the basis used in the representation of the
functional data Xi(t) and the functional coefficient β(t, Ti) respectively
with ai and b their respective coefficients and Mi = φi ⊗ ψi where ⊗
represents the Kronecker product.
The basis ϕi can be described as the Ti first rows of the basis (ϕN )TN×p

which is the basis of the subject with more observations, and ψi is the i-th
row of a basis ψN×r. This basis is associated to the number of observations
of all the subjects: T = [T1, . . . , TN ], hence for subject i we only use the
i-th row. We use B-splines for all our basis representations.
With these representations, our model is transform into a multivariate re-
gression model:

η = α+Cγ + 1
T

∫
T
X(t)β(t, T ) dt

= α+Cγ +AΨb = Bθ,

with (A)N×Np a block diagonal matrix which i-th block of the diagonal
is aT

i and (Ψ)Np×qr = (Ψ1, . . . ,ΨN )T where Ψi =
1
Ti

∫
Ti
ϕT

iMi dt. The
calculation of the matrix of inner products Ψ is one of the novelties of
our work. One of the mayor difficulties for its calculation is the fact that
the product is between a one-dimensional base and a two-dimensional one.
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We perform the integration calculations only in the t dimension but per-
form the product of the two whole basis while maintaining the proper two-
dimensional structure. As far as we know this type of inner product has
not been done before. Then for the estimation of the model coefficients we
will use Penalized Maximum Likelihood, particularly an anisotropic two di-
mensional penalization will be used, allowing us to control the smoothness
of the functional coefficient independently for each dimension

Lp(θ,y) = L(θ,y)− 1
2θ

TPθ,

where L(θ,y) is the likelihood of Y , P = λt(Ir ⊗ DqT
2 D

q
2) + λT (Iq ⊗

DrT
2 D

r
2) is the penalty matrix and DqT

2 ,DrT
2 are matrices of second order

difference of adjacent coefficients of θ.
In order to efficiently estimate the smoothing parameters λt and λT jointly
with the rest of the parameters in the model we reparametrize our model
as a mixed model. Therefore, we are in the context of Generalized Linear
Mixed Models (GLMMs) and we use Penalized Quasi-Likelihood (Breslow
N. E. et al, 1993) for parameter estimation. To speed up computations
we make use of the SOP( Separation of Overlapping Penalties) algorithm
(Rodŕıguez-Álvarez, M. et al., 2019). In the next sections we will show the
good performance of our methodology via a simulation study.

3 Simulation study

Our methodology is tested in a simulation study based on the one pre-
sented in Gellar et al. (2014) and we compare the obtained results of using
three different methodologies: Our approach named “New approach”, the
Gellar approach and the Goldsmith approach (Goldsmith et al., 2011); this
approach perform a preregistration of the curves to a common domain and
then estimate the usual functional regression model. Our simulation model
is the following:

Yi = ηi + ϵi, ϵi ∼ N(0, 1), i = 1, . . . N = 100

ηi =
1
Ti

Ti∑
tj=1

Xi(tj)βb(tj , Ti),

where the domain of the sample curves Ti is simulated using an uniform dis-
tribution: Ti ∼ Uniform(10, 100). The true functional coefficients βb(t, Ti)
are simulated by the following functions:

β1(t, Ti) = 10
t

Ti
− 5 ; β2(t, Ti) =

(
1− 2Ti

J

)
×

(
5− 40

(
t

Ti
− 0.5

)2
)
;

β3(t, Ti) = 5−10

(
Ti − t

J

)
; β4(t, Ti) = sen

(
2πTi
J

)
×
(
5− 10

(
Ti − t

J

))
.
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The functional data is simulated from two different scenarios.
Scenario 1: The functional data is generated as smooth curves

Xi(tj) = ui +
10∑
k=1

{
vik1 · sen

(
2πk

J
tj

)
+ vik2 · cos

(
2πk

J
tj

)}
ui ∼ N(0, 1), vik1, vik2 ∼ N(0, 4

k2 ), tj = 1, . . . , J = 100.

Scenario 2: The functional data is generated as noisy curves by adding
noise to the previous smooth curves

Xi(tj) = ui +
10∑
k=1

{
vik1 · sen

(
2πk

J
tj

)
+ vik2 · cos

(
2πk

J
tj

)}
+ δi(tj) ,

ui ∼ N(0, 1), vik1, vik2 ∼ N(0, 4
k2 ), δi(tj) ∼ N(0, 1), tj = 1, . . . , J = 100.

Finally for all the possible scenarios our sample data set is the re-
sponse variable Yi and the noisy functional data Xi from scenario 2:
S = {Yi, Xi}, this will allow us to evaluate the ability to filter the noise
of our methodology through the basis representation of the functional data.

We evaluate the performance of the three methodologies in the simulation
study using the following evaluation criteria for the prediction and estima-
tion errors respectively:

RMSEr =

√√√√√√
(

K∑
i

(Y r
i − Ŷ r

i )
2

)
K

AMSEr =
1

J(J + 1)

J∑
k=1

k∑
j=1

{
βr
b (tj , k)− β̂r

b (tj , k)
}2

,

where Ŷ r
i and β̂r

b (tj , k) are the estimation of the response variable and
the functional coefficient respectively. For the estimation of the response
variable we use a cross-validation K-fold approach considering K = 10.
Finally we repeat our simulation r = 100 times. The obtained results are
shown in Figure 1 and Figure 2 for the RMSE and AMSE respectively.

We can see that our methodology outperform the others with a great im-
provement in the estimation errors. This will be of great importance for
studies in medical research where a good estimation of the functional co-
efficient directly imply a good feedback for patients on what to do for
improving their health.
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FIGURE 1. RMSE for the Beta1 in
scenario 2.
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FIGURE 2. AMSE for the Beta1 in
scenario 2.

4 Real data application

TELEPOC data set (Esteban, C. et al, 2016) collects a wide range of
data from 110 patients suffering Chronic Obstructive Pulmonary Dis-
ease(COPD). The aim is to study the relationship between physical ac-
tivity, measured as daily steps given by each patient (functional covariate)
and the annual ratio of hospitalizations due to COPD (response variable,
Y ∼ Poi(µ)). The number of days where steps are collected is different
from patient to patient; therefore we are in presence of variable domain
functional data. Moreover, non-functional covariates have been considered
providing the following variable-domain functional regression model:

η = log(µ) = α+Cγ +
1

T

∫
T

X(t)β(t, T ) dt+ log

(
T

365

)
, t ∈ [1, T ].

4.1 Results

The functional parameter β(t, T ) represents the relationship between phys-
ical activity and the annual ratio of hospitalizations due to COPD. The
correct estimation of this coefficient is of great importance because it per-
mit us to determine how to improve the patient health. Figure 1 shows
the estimated functional parameters for patients that carried out physical
activity for different length periods. The curves present a common feature:
doing physical activity regularly during more than 8 months help to reduce
the mean number of hospitalizations due to COPD. From the rest of the
curves we see how, regardless of the length, their values end up being
negative and their slope decreasing, indicating a positive influence of phys-
ical activity in the reduction of the annual rate of hospitalizations. From the
non-functional covariates included in the model we conclude: people that
had been hospitalized before are more prone to suffer new hospitalizations,
women are more susceptible to be hospitalized than men, depressive symp-
tomatology rise the annual rate of hospitalizations and anxious symptoma-
tology reduces it.
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FIGURE 3. Curve β(t, Ti) for patients with Ti days in the study.

5 Conclusions and future work

We have proposed a new methodology for the estimation of a variable
domain functional regression model based on penalized B-splines approxi-
mation and their mixed model representation, using the SOP method for
the estimation of the functional coefficients and the penalization parame-
ters. This methodology is tested with a simulation study where results show
our method outperforming other approaches, and the TELEPOC data set,
where we conclude that regular physical activity helps to reduce the mean
number of hospitalizations of COPD patients. We are currently working on
the extension of this methodology for the case of more than one functional
covariate.
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Abstract: The use of synthetic data sets are becoming ever more prevalent,
as regulations such as the General Data Protection Regulation (GDPR), which
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hence protection - to cell counts. The paper also discusses how distributional
properties of synthesis models are intrinsic to generating synthetic data with
suitable risk and utility profiles.
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1 Introduction

As organisations have both a legal and ethical obligation to protect individ-
uals’ personal data, data sets pertaining to individuals cannot be released
directly to researchers. Thus prior to release, statistical disclosure control
methods, such as the use of synthetic data sets, need to be applied.
Synthetic data sets (Rubin 1993, Little 1993), which are generated by sim-
ulating from a model fit to the original data, can be released to researchers
in place of the original data. The notion is that, as the synthetic data sets
are inherently artificial, individuals’ privacy should be protected; while, as
synthetic values are based on original values, researchers’ ability to ob-
tain valid inferences should remain undiminished. The method relies on
the synthesizer – he or she responsible for generating the synthetic data –
accurately modelling the data’s underlying distribution.
The theory of synthetic data evolved from the multiple imputation of miss-
ing data theory (Rubin, 1987). The synthesizer either imputes values for in-

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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dividuals not included in the original data (resulting in fully synthetic data;
Raghunathan 2003) or generates replacement values for those individuals
who were included in the original data (resulting in partially synthetic data;
Reiter 2003). As with imputation, it is typical to release multiple (m > 1)
data sets to allow analysts – through combining rules; see Drechsler (2011)
- to average point estimates and properly account for the extra uncertainty
arising from synthesis when calculating estimates’ variances.
When synthesizing a data set comprising p variables Y1, Y2, . . . , Yp, the
underlying distribution of the data can be captured through a product of
conditional models, that is,

f(Y1, Y2, . . . , Yp | X) = f1(Y1 | X)

p∏
j=2

fj(Yj | Yj−1 . . . , Y2, Y1, X),

where X denotes any other data available to the synthesizer, such as other
relevant data sets, census tables or administrative data.
The synthesis models for Y1, Y2, . . . , Yp can take a variety of forms - para-
metric or non-parametric - ranging from generalised linear models (GLMs),
to tree-based methods such as CART, to complex machine learning algo-
rithms. The aim of all these methods, though, is the same: to model the
underlying distribution governing the original data.
A categorical data set comprises categorical variables only. Its discrete na-
ture allows the data to be aggregated into a contingency table, such that
cell counts give the frequencies with which the various combination of cate-
gories (cells) are observed; a given set of categories may not be observed, in
which case the cell count would be zero. Synthesis can take place by fitting
a count model to this table, which is more convenient as the response is
univariate rather than multivariate.

2 The motivation for using saturated models

The purpose of synthesis models, then, is for neither inference nor predic-
tion, but to reproduce the structure of the original data. Therefore, unlike
when estimating a population parameter, modelling assumptions are not
intrinsic to obtaining meaningful estimates and standard errors. For this
reason, Jackson et al. (2022) proposed the use of saturated count models
for synthesis.
Let f1, f2, . . . , fK denote the observed counts in the original data’s contin-
gency table (the original counts). Then the corresponding counts in the syn-
thetic data’s contingency table (the synthetic counts) f syn

1 , f syn
2 , . . . , f syn

K

are generated by simulating from:

f syn
i ∼ Xi i = 1, 2, . . . ,K (1)

where Xi is a count distribution with mean fi. Section 3 considers the best
distribution to use for Xi.
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The advantage of using a saturated count model is three-fold. Firstly, satu-
rated models require no model selection - which in categorical data involves
deciding which interactions to include in the model - as all interactions are
included. This ensures all relationships are preserved in the resulting syn-
thetic data, thus avoiding the scenario where a researcher’s analysis subse-
quently performed on the synthetic data is more complex than - and hence
unsupported by - the synthesis model (Meng, 1994).
Secondly, the time taken to undertake the synthesis, computationally, is
substantially reduced because the model-fitting time is null: the model’s
fitted values are just the original counts.
Thirdly, synthetic counts are unbiased with expectations equal to the orig-
inal counts. In turn, this gives the synthesizer an insight a priori (prior to
synthesis) into the likely risk and utility profiles of the synthetic data. To
illustrate, original counts of one are usually those at greatest risk of dis-
closure in a categorical data set because they relate to statistically unique
individuals. Therefore, a suitable risk metric for synthetic data is τ3(1)
(Jackson et al. 2022): the probability that an original count of one is syn-
thesized to one, which relates to a unique in the original data remaining
unique in the synthetic data. Now, this unbiasedness property means that
if, say, the Poisson is used for synthesis - that is, if the Poisson is chosen
as X in (1) - then τ3(1) is fixed and equal to exp(-1)=0.37; those familiar
with R will recognize this as the quantity dpois(1,1).
This third advantage opens up a new approach in relation to generating
synthetic data sets. As synthetic data generation is typically an iterative
process, involving extensive post-synthesis evaluations to establish risk and
utility, gaining an insight into properties of the synthetic data a priori
improves the efficiency of the synthesis and invites a more formal approach.

3 The use of multi-parameter count distributions

The most obvious choice of distribution for modelling categorical data is
the Poisson. Besides, models often assume that individuals’ observations
are independent. While for data sets in microdata format this translates
into assuming the rows of the data set are independent, for a contingency
table it translates into assuming cell counts are Poisson distributed.
The problem with using the Poisson, though, is that each synthetic count’s
variance is always equal to the mean (the original count). Therefore, the
variance of each synthetic count is fixed, and this uncertainty may be in-
sufficient to mask - and hence protect - the underlying original count.
There are benefits, therefore, to using more flexible count distributions in-
stead of the Poisson. The flexibility of the GAMLSS (Generalized Additive
Models for Location, Scale and Shape) framework developed by Rigby and
Stasinopoulos (2005) is particularly useful here. For more about the distri-
butions mentioned henceforth and their parameterizations, see Rigby et al.
(2019), the book written by the creators of the GAMLSS approach.
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A two-parameter count distribution such as the negative binomial (NBI)
provides the synthesizer with control over the scale (the variance) in addi-
tion to the location (the mean), thereby allowing more uncertainty to be
applied to original counts. The metric τ3(1), for example, then depends on
σ the NBI’s shape parameter. The intention is that the synthesizer treats σ
as a tuning parameter in the synthesis; after all, as the model is saturated,
σ could not be estimated anyway through maximum likelihood.
However, increasing the variance of the NBI through increasing σ increases
the heaviness of the tails, resulting in a substantial probability point mass
at zero. This produces synthetic data with an inflated number of zeros,
which is exacerbated by the fact that, as saturated models are used, zero
counts in the original data are not synthesized to non-zero counts.
This calls for further flexibility and motivates the use of three-parameter
count distributions, which allow the synthesizer to control the shape in
addition to the location and scale. One such example is the Delaporte
distribution. For a given mean and variance, the shape of the Delaporte
can be adjusted to reduce the heaviness of the tails, resulting in fewer
zero synthetic counts as well as fewer unnecessarily large synthetic counts.
This can be seen in Figure 1, which gives three Delaporte distributions,
with the same means and variances but different shapes; for example, the
probability of obtaining a zero is much greater in the distribution given by
the red (solid) line than in the other two.
The problem in general, though, with distributions that arise through Pois-
son mixtures (such as the NBI and Delaporte), is that their variances are
increasing functions of the mean, hence relatively more noise is applied
to larger counts than smaller counts. However, as larger counts tend to be
lower risk than smaller counts, it is preferable if the variance is a decreasing
function of the mean, so that larger counts are perturbed less.
Rather than using a standard count distribution, an alternative it to use
discretization to produce a more bespoke count distribution, by discretizing
a continuous distribution defined on the interval (0,∞) - an “underused”
method according to Rigby et al. (2019). A candidate for discretization is
the gamma family (GAF) distribution, which has three-parameters µ, σ and
ν, and where ν controls the variance-mean relationship. The mean is µ and
the variance σ2µν ; thus, when ν < 0, the variance is a decreasing function
of the mean, and larger counts are perturbed less than smaller counts -
the desired behaviour. Figure 2 displays the variance-mean relationship
for three GAF distributions, which is one of exponential decay, where ν
controls the rate at which the variance falls away.

4 Conclusion

To briefly conclude, while saturated models are uninformative from an in-
ferential perspective and too rigid from a predictive perspective, they have
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FIGURE 1. The probability mass functions of three Delaporte distributions with
the same mean and variance, 10 and 510, respectively. The flexibility afforded
by a three-parameter count distribution allows the shape of the distribution to
be adjusted. Incidentally, the red (solid) line is an NBI distribution, which is a
special case of the Delaporte.
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FIGURE 2. The variance-mean relationship for three GAF distributions with
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a practical use in data synthesis, where it suffices to obtain a noisy version
of the original data. Coupled with the use of a flexible multi-parameter
count distribution - for which it can be equally difficult to justify the use
of in practice - saturated models allow properties of the synthetic data
to be derived analytically a priori, thus facilitating a more efficient and
transparent synthesis.
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1 Introduction

Sensor data analysis blends together regression with spatio-temporal statis-
tics. Robustness concerns may arise in the case of noisy data. Computa-
tional issues will likely add up if the analyses are to be carried out repeat-
edly or even in real time. Online processing makes the analysis even more
challenging, in this respect.
Control theory is a methodology that can help to turn such analyses into
automation. In particular, here we focus on adaptive filters as a versatile
tool to keep system information up-to-date even in the case of frequent
regime shifts. Adaptive filtering approaches assume time-varying param-
eters, which can be tracked efficiently via recursive estimators (Haykin,
2014). These estimators will approximately maximize a suitable objective
function, e.g., a log-likelihood, based on stochastic gradients and Hessians
or their approximations.
Inspired by Cressie (1993), we present a Spatio-Temporal Conditional
Auto-Regressive model (STCAR) that can be useful in sensor data analysis.
An example based on open data illustrates how the model can be tracked.
The filter becomes more robust when stated in terms of median regression.
As a result, all the parameters are tracked robustly.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).

211



Lambardi di San Miniato et al.

2 Model formulation

We propose a STCAR model that is suitable for prediction, as it involves
only past observations. The style of formulation is closely related to Politis’
transformative approach (2015), where some whitening transformations are
devised to remove the correlation structure from the data.
Let s = 1, . . . , S and t = 1, . . . , T be space and time indices, respectively.
Here, (Yst)s,t denotes the response process, (ϵst)s,t a Gaussian white noise
with variance σ2, and (xst)s,t are p-dimensional covariate vectors. The pa-
rameter vector is θ = (ψT, σ)T with ψ = (ρ, ϕ, βT)T, ρ, ϕ ∈ R, β ∈ Rp,
σ > 0. Also let wss′ ∈ R, for s, s′ ∈ S, be spatial weights based on proxim-
ity, customly chosen, under the constrains wss = 0 and

∑
s′ wss′ = 1. Let

∆ ∈ {1, 2, . . . } be the prediction horizon.
The STCAR model is formulated as

WS [WT {WV (Yst)}] = ϵst ,

where WS ,WT ,WV are whitening transformations, defined as

WS(zst) = zst − ρẑst′ , WT (zst) = zst − ϕzst′ , WV (zst) = zst − βTxst′ ,

for all spatio-temporally referenced quantities zst. Here, ẑst =
∑

s′ wss′zs′t
and t′ = t−∆.
The model can be stated alternatively as

Yst = µst + ϵst ,

with

µst = µst(ψ) = ρŶst′ +ϕYst′ − ρϕŶst′′ +βT(xst′ − ρx̂st′′ −ϕxst′′ + ρϕx̂st′′′) .

This is a regression model, though nonlinear in the parameters, in a state-
space form, where Yst is a function of the past up to an innovation term
ϵst. Such a formulation helps in both estimation and prediction.

3 Filtering

The parameter θ is assumed to be time-varying, thus denoted by θt at
time t, and is tracked using a local mean regression estimator θ̂t, ruled
exchangeably by a bandwidth parameter δ > 1 or by a learning rate λ ∈
]0, 1[, related to each other as

λ = 1/δ .

These quantities are crucial in trading off bias with variance, as often is
the case with tuning constants of semi-parametric methods. A large value
of λ, close to unit, makes the filter more efficient, as it will follow more
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closely the true trajectory of θ, but also leads to noise fitting and oscillatory
behavior. On the contrary, a low value of λ makes the filter more stable,
but only capable to estimate a coarse approximation to the true parameter
trajectories. An in-between solution is required in practice.
One can track σt via exponential smoothing, as σ̂2

t = (1 − λ) σ̂2
t−1 +

λ
∑

s ϵ̂
2
st/S, with ϵ̂st = Yst − µ̂st, µ̂st = µst(ψ̂t−1). Similarly, ψt can be

tracked via a quasi-Newton Stochastic Gradient Descent (SGD) algorithm
with constant learning rate λ (Haykin, 2014), as

ψ̂t = ψ̂t−1 + λCt

∑
s

gst
S
, Ct =

{
(1− λ)C−1

t−1 + λ
1

S

∑
s

gst g
T

st

}−1

, (1)

where Ct is a condition matrix, tracked recursively, and gst is defined as

gst = (WT {WV (ŷst′)} , WS{WV (yst′)} , WS{WT (xst′)}T)
T · est , (2)

with est = ϵ̂st/σ̂
2
t−1. The more robust median regression (Koenker, 2005)

is attained by replacing est with ēst, defined as

ēst =
sign(ϵ̂st)

γ̂t−1
. (3)

The filter formed by (1)–(3) is also known as the sign algorithm in the
literature, see Shao et al. (2010). Here, γt > 0 is a mean absolute deviation
parameter, tracked by means of γ̂t defined as

γ̂t = (1− λ) γ̂t−1 + λ
1

S

∑
s

|ϵ̂st| , (4)

The formulation made up of (1)–(4) underlies a Laplace likelihood instead
of a Gaussian one. The error distribution is just a working assumption
that be wrong, but under suitable misspecified scenarios it may suffice to
multiply ēst by a constant that depends on the true error distribution. In
adaptive filtering, such a constant can be absorbed into the learning rate,
which is thus the only hyperparameter to be tuned.
Often, in practice, it may happen that the variability in the covariates drop
and the design matrix becomes near-singular. In such cases, it is not ad-
visable to formulate Ct as in (1). It can be safer in this sense to formulate
Ct in a diagonal fashion, which is also easier to invert in high-dimensional
problems. In the next example, a diagonal version of Ct was deemed nec-
essary to avoid singularity. Whenever the original version of Ct does not
break down, the filter with diagonal Ct looks to be a good approximation,
thus little efficiency was lost, while benefiting from increased stability.

4 Example: KETI data

The data on focus were collected by Hong et al. (2017), via sensors
provided by the Korea Electronics Technology Institute (KETI), and
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are available at https://cseweb.ucsd.edu/~dehong/data/keti.html.
The data provide information on the environmental conditions of
51 rooms, scattered across four floors, in Sutardja Dai Hall, an
office building at UC Berkeley. Floor plans can be found at
https://citris-uc.org/about/sutardja-dai-hall.
The sensors provided readings asynchronously, roughly every five seconds,
for one week in August 2013. We project the data so the readings are
synchronous and available every second, so 1 hour provides 3600 data rows.
The variables were: room temperature (in °C), relative air humidity (%),
CO2 concentration (ppm), light (lux) and passive infrared motion data
(made binary here). In Room 419, temperatures of 500°C and above were
clearly off-scale, so we imputed them using the last available observation.
These were trivial outliers that can be easily ruled out in practice based
on sensor specs and common sense. Luminosity typically revolved around
250 lux, but in Room 668 it was 2000 lux, which is still legitimate, thus we
retain it in the analysis. For the generic location s, its Markov neighborhood
was defined as the cluster of rooms it belongs to, based on floor plans; the
spatial weights wss′ imply simple averages of such neighborhoods.
Predicting humidity is the aim of the present analysis, which can be re-
peated for other variables. Both local mean and median regressions were
carried out, with bandwidth δ ranging in 1, . . . , 12 hours. The prediction
horizon is chosen to be ∆ = 1 hour. In Figure 1, the optimal bandwidth
can be found, based on either mean absolute prediction error (L1) and root
mean square error (L2). It looks optimal to set δ = 6 hours for mean re-
gression and δ = 3 for median regression. Moreover, in the case of mean
regression, the optimum is not sharp, but a slightly longer bandwidth may
perform similarly. It seems thus that the robust filter can leverage more
local information, while the non-robust filter needs a tuning more oriented
to stable behavior.
In Figure 2, L2 error is reported for each location, for both regression types.
The tuning constants were set equal to their optimal values, as inferred
from Figure 1. To prove our point, we compare the two regression types in
terms of L2 error to slightly favor mean regression, only to show that even
in such a favorable case it will be outperformed by the median regression
in some relevant sense. Mean regression is designed to minimize L2 error
globally, but not within each location. Even so, one would expect that mean
regression will outperform median regression in the L2 sense. However, it
seems that most locations are better predicted in this sense by median
regression. Mean regression looks driven mostly by outliers, see the lone
room in the top right. Similar results can be obtained based on L1 error,
with greater edge for median regression.
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FIGURE 2. L2 error for mean regression (absolute, x-axis) and median regression
(relative, y-axis). One dot for each location, logarithmic scale on the x-axis.

5 Closing remarks

Local estimators can accommodate for time-varying dynamics in an al-
gorithmic fashion. Here, robust methods were shown to work even more
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locally than their non-robust counterparts. Mean regression may demand
larger bandwidths and sacrifice locality, just to smooth the outliers out.
Median regression supports smaller bandwidths and can thus better ap-
proximate nonlinear systems.
Ongoing research may involve a deeper study of the theoretical properties
of the proposed adaptive filter. Indeed, its properties can be deduced within
control theory, but a more statistical assessment may be provided within
the related kernel estimation framework. Furthermore, some other real data
examples will likely provide some further insights into the behavior of the
filter. A software implementation in R is being developed.
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Abstract: Extended cure survival models enable to separate covariates that af-
fect the probability of an event (or long-term survival) from those only affecting
the event timing (or short-term survival). We propose to generalize the bounded
cumulative hazard model to handle additive terms for time-varying (exogenous)
covariates jointly impacting long- and short term survival. The selection of the
penalty parameters is a challenge in that framework. A fast algorithm based on
Laplace approximations in Bayesian P-spline models is proposed. The method-
ology is illustrated with the analysis of pension register data enabling to explore
the association between time-varying women’s earnings and fertility transitions
in Germany.
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1 The extended cure survival model

Cure survival models explicitly acknowledge that a proportion of the stud-
ied population will never experience the event of interest whatever the
duration of the follow-up. Our starting point is the promotion time (cure)
survival model, also named the bounded cumulative hazard model (Yakovlev
and Tsodikov, 1996) and its extension in Bremhorst and Lambert (2016).
Let v = (z,x) and ṽ = (z̃, x̃) denote vectors of categorical and quantita-
tive covariates (with 0 denoting their reference values). If Sp(t|v, ṽ) is the
conditional population survival function, then

Sp(t|v, ṽ) = exp{−ϑ(v)F (t|ṽ)}

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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where t > 0, ϑ(v) > 0 and where F (t|ṽ) is a cumulative distribution func-
tion such that F (0|ṽ) = 0 and F (T |ṽ)) = 1 with T denoting the minimal
time after which a subject can be declared cured. The corresponding popu-
lation hazard is hp(t|v, ṽ) = ϑ(v)f(t|ṽ). The proportion of cured subjects
in the sub-population defined by v is π(v) = exp{−ϑ(v)} > 0. A log-linear
model is taken for ϑ(v) = exp{ηϑ(v)} and a proportional hazards model
is considered for F (t|ṽ) = 1 − S0(t)

exp(ηF (ṽ)) where S0(0) = 1, S0(T ) = 0
and ηϑ(·), ηF (·) are (possibly non-linear) function of the covariates with
identification constraint ηF (0) = 0 for the latter.

1.1 Reference survival and additive sub-models

A flexible form based on P-splines (Eilers and Marx, 1996) is taken for

f0(t) = −dS0(t)/dt, f0(t) = exp (
∑

k bk(t)ϕk) /
∫ T

0
exp (

∑
k bk(u)ϕk) du

with t ∈ (0, T ), {bk(·)}Kk=1 a large B-splines basis associated to equidis-
tant knots on (0, T ) and ϕϕϕ = (ϕk)

K
k=1 a vector of spline parameters with

ϕ⌊K/2⌋ = 0 (for identification purposes). It is directly connected to the ref-

erence population hazard, hp(t|0,0) = eβ0f0(t). Smoothness is forced on
f0(·) by penalizing changes in the spline coefficients. Additive models are
suggested to describe the effects of quantitative covariates on ηϑ(v) and
ηF (ṽ):

(
ηϑ(vi)

)n
i=1

= Zβββ +
J∑

j=1

fj = Xψψψ ;
(
ηF (ṽi)

)n
i=1

= Z̃γγγ +
J̃∑

j=1

f̃j = X̃ ψ̃ψψ

where [fj ]i =
∑L

ℓ=1 sjℓ(xij)θℓj = [Sjθθθj ]i, [f̃j ]i =
∑L

ℓ=1 s̃jℓ(x̃ij)θ̃ℓj = [S̃jθ̃θθj ]i,
denote smooth additive terms quantifying the effect of quantitative co-
variates on long- and short-term survival, respectively, with matrices of
recentered B-splines Sj , S̃j , design matrices X = [Z,S1 . . .SJ ], X̃ =

[Z̃, S̃1 . . . S̃J ], regression and spline parameter vectors ψψψ = (βββ,θθθ1, . . . , θθθJ),

ψ̃ψψ = (γγγ, θ̃θθ1, . . . , θ̃θθJ).

1.2 Extension to time-varying covariates

Assume now that the covariates are exogenous and can change values over
time. Our proposal is to model the hazard rate at the population level using

hp(t|v(t), ṽ(t)) = ϑ(v(t))f(t|ṽ(t)) = eηϑ(v(t))+ηF (ṽ(t))f0(t)S0(t)
exp(ηF (ṽ(t))−1

yielding a (promotion time) cure survival model with time-varying covari-
ates, shortly named the TVcure model. The associated cumulative hazard
function can be obtained numerically using quadrature. In the special case
where covariates are constant, we recover the expressions for the population
hazard and cumulative hazard functions in Bremhorst and Lambert (2016).
In the general case, the linear predictors ηϑ and ηF not only change over
units, but also potentially over time. Therefore, the associated design matri-
ces also depend on time with

(
ηϑ(vi(t))

)n
i=1

= Xtψψψ,
(
ηF (ṽi(t))

)n
i=1

= X̃tψ̃ψψ.
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2 Inference and penalty parameter selection

Assume now that data for each unit can be reported in a regular manner
over time (measured in dt units of time). Then, the data for the ith unit
would be Di = {(dit,vi(t), ṽi(t)) : t = 1, . . . , ti} where dit is the event in-
dicator identically equal to 0 for all t, except perhaps the last value diti
equal to one if δi = 1 when an event is observed within (ti−dt, ti), and zero
otherwise. Then, on can show that the log-likelihood contribution for unit i
is ℓi(ϕϕϕ,ψψψ, ψ̃ψψ|Di) = −

∑ti
t=1 µit + diti logµiti , with µit = hp(t|vi(t), ṽi(t)) dt.

If ℓ =
∑n

i=1 ℓi denotes the log-likelihood, then the joint posterior for the

model parameters, p(ϕϕϕ,ψψψ, ψ̃ψψ, τ0, τττ , τ̃ττ |D), follows from Bayes’s theorem, with
smoothness priors for the spline parameters defining f0(t) and the additive
terms in long- and short-term survival, p(ϕϕϕ|τ0) ∝ exp (−.5ϕϕϕT(τ0P0)ϕϕϕ),

p(θθθj |τj) ∝ exp
(
−.5θθθT

j (τjP)θθθj
)
and p(θ̃θθj |τ̃j) ∝ exp

(
−.5 θ̃θθ

T

j (τ̃jP̃) θ̃θθj

)
.

The selection of the penalty parameters λλλ = (τ0, τττ , τ̃ττ) is particularly chal-
lenging. It is based on the maximization of their marginal posterior. Start-
ing from the following identity p(λλλ|D) = p(ϕϕϕ,ψψψ, ψ̃ψψ,λλλ|D)/p(ϕϕϕ,ψψψ, ψ̃ψψ|λλλ,D)
with a Laplace’s approximation substituted to the conditional posterior
of the spline parameters in the denominator, one can approximate the
marginal posterior of the penalty parameters by

p(λλλ|D)
.∝ p(ϕ̂ϕϕτ0 , ψ̂ψψτ ,

ˆ̃
ψψψτ̃ ,λλλ|D)

∣∣Σ−1
τ

∣∣−1/2

with explicit mathematical expressions for the precision matrix Σ−1
τ , see

Lambert (2021) for a similar strategy in nonparametric double additive
location-scale models. The maximization of the marginal posteriors for the
penalty parameters can be made using the fixed point iteration method,
while the MAP for the regression and spline parameters can be obtained us-
ing Newton-Raphson algorithms (for given penalty parameters). The pro-
cedure is iterative and fast thanks to explicit forms for first and second
derivatives. It is crucial given the amount of data in the application.

3 Application

The data of interest is a random sample from German Pension registers.
We focus here on cohorts of West German women that were childfree at
their 20 years anniversary. The registers provide individual information on
employment status and gross earnings on a monthly basis. Earnings (ex-
pressed here as a percentage of the average gross earnings in a given year)
vary frequently over time, unless a woman is studying or is unemployed, in
which case it is zero. The starting month of the pregnancy was calculated
as the birth date of the 1st baby minus 9 months.
Analyses based on the TVcure model described in the previous section
were made separately for four consecutive 5-year cohorts between 1950 and
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1969, see Table 1 for descriptive statistics. The follow-up considered for each
woman started at the age of 20 until at most 45 with a possible interruption
at the 1st pregnancy or due to a loss of follow-up (i.e. right censoring) with,
in the latter case, an uncertainty on the ‘cure’ (i.e. childfree) final status
of the person. Thus, in this fertility context, a woman will be considered
‘cured’ if she doesn’t have a child by age 45.
The analysis suggests that earnings have a non-significant effect on the
probability of becoming a mother (see 2nd row on Figure 1), except in
the 1950-54 cohort where low-income women are more likely to have a
child. Although this effect tends to diminish over the years (see 3rd row in
Figure 1), women with lower income tend to have their first child earlier.
As an illustration, the estimated hazard for women with half the average
gross earnings has been computed for the different cohorts (see the 1st row
in Figure 1) with a modal value at about age 24 for the 1950-54 cohort
moving fifteen years later to age 28 with the 1965-69 cohort.

TABLE 1. Summary statistics on cohort data with monthly individual follow-up.

Person Mother by age 45

Cohort n months Yes No Right-cens.

1950-54 1628 196419 1209 (74.3%) 346 (21.2%) 73 (4.5%)
1955-59 2379 315789 1667 (70.1%) 555 (23.3%) 157 (6.6%)
1960-64 3002 412876 2088 (69.5%) 650 (21.7%) 264 (8.8%)
1965-69 3356 485773 2216 (66.0%) 763 (22.8%) 377 (11.2%)
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FIGURE 1. Estimated 1st pregnancy hazard hp(t|x = .5) for women with half
the average gross earnings (Row 1) ; Effects of gross earnings on the probability
(Row 2) and the timing (Row 3) of a first pregnancy.
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1 Substantive problem and approach

Physicists have proposed a wide range of new theories that extend the
Standard Model of particle physics with new types of fundamental particles
and new interactions. Such new theories are collectively known as Beyond-
the-Standard-Model (BSM) theories. A BSM global fit refers to a large-scale
parameter estimation study, in which the preferred values or ranges for the
parameters of a BSM theory are determined by simultaneously comparing
the theory’s predictions to the results from all relevant experiments. The
basis for this parameter estimation is a joint likelihood function, which
is a function of the parameters of the BSM theory. The evaluation of the
likelihood, however, involves many time-consuming physics calculations and
simulations, which limit the scope of current BSM global fits. Our goal is to
introduce an algorithm that can provide fast, per-point surrogate models for
these time-consuming physics computations, or for the likelihood function
directly. For simplicity, we will focus on the latter case. Since the set of
relevant experimental results that enter the likelihood function is usually

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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updated between every new BSM global fit, a key requirement for the
algorithm is that it is able to train the surrogates on-the-fly during the
execution of the BSM global fit.

comlicated
physics
calculation

scanner
take path if
prediction is
good enough

algorithm

FIGURE 1. Conceptual sketch of how the algorithm fits into the computational
framework of a BSM global fit.

Figure 1 provides a sketch of how the algorithm fits into the computa-
tional framework of a BSM global fit. An adaptive sampling algorithm (the
“scanner”) is responsible for sampling parameter points θ from the BSM
parameter space. Each such point is passed to a code responsible for carry-
ing out the expensive physics calculations that results in a single likelihood
value L(θ) for the given point. This likelihood is then passed back to the
scanner, which uses it to determine how to pick the next θ point. Our algo-
rithm will operate as a middle layer, that can intercept the communication
between the scanner and the true likelihood computation. By learning from
the continuous stream of θ and L(θ) values, the algorithm can gradually
learn the likelihood function in the regions of θ space explored by the scan-
ner. Once the algorithm has obtained a good enough estimate L̂(θ) for L(θ)
in a certain region, it can short-circuit the likelihood calculation for any
future θ points in this region by passing the fast estimate L̂ directly back to
the scanner. However, for θ points where the estimate L̂ is still highly uncer-
tain, the algorithm will pass the point on to the true likelihood calculation
and learn from the L(θ) value being passed back.

2 Data

We use data from a recent BSM global fit by the GAMBIT Collaboration
(2019). Here the target likelihood is a function of four free BSM input
parameters. To emulate the global fit we pass the data points through our
algorithm one by one, in the order they were sampled by the differential
evolution scanner used in the GAMBIT study. For comparison with earlier
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work, discussed below, we also perform tests with the SARCOS dataset
available from www.gaussianprocess.org/gpml/data.

3 Model(s)

We start from the dividing local Gaussian process (DLGP) algorithm of
Lederer et al (2020). The algorithm uses the stream of input data to dynam-
ically divide the input space into sub-spaces and train a Gaussian process
(GP) on each of them. This dynamic splitting can be viewed as a growing
tree structure, where the outermost nodes, called leaves, each contain a
part of the data and a corresponding GP. Many decisions have been made
to implement the algorithm: A leaf splits into two child leaves when a cer-
tain number of input points N̄ is reached. The split is performed along the
input dimension with the largest variance. A smoothing effect is created
by randomly assigning some points to the sibling leaf. The probability of
assigning points decays linearly with the distance from the splitting value.
The predictive distribution of the tree is obtained by computing the prob-
ability of assigning the point x to leaf j, p̃j(x) =

∏νj

i=1 p⌊ j+1

2i
⌋−1(x), with

depth νj , that leads to the predictive distribution

pDLGP(f(x)|x, X, y) =
∑
j

p̃j(x)pGPj
(f(x)|x, Dj),

where pGPj
is the prediction of the GP of the j-th leaf on the data setDj .X

and y are the data set and the target variable, respectively. The predictive
distribution follows a normal distribution with mean µ∗ and variance σ2

∗,

µ∗(x) =
∑
j∈I

p̃j(x)µj(x) (1)

and
σ2
∗(x) =

∑
j

p̃j(x)
(
σ2
j (x) + µj(x)

)
− µ∗(x), (2)

where µj(x) and σ2
j (x) are the mean and variance of leaf j.

3.1 Extension of previous work

Our work extends this base-line implementation by offering additional op-
tions for the aforementioned decisions, regulating them by hyperparame-
ters. We offer the chance to perform the splitting along the first principal
component. We include a Gaussian “decay shape”. We allow varying the
covariance function from the squared exponential originally used in Lederer
et al (2020) to Matérn kernels. And most importantly, we update the pa-
rameters of the GPs each time a new data point is added. This provides a
slower, but more precise and flexible algorithm than the original approach
of fixing the GP parameters based on the first 100 data points.
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4 Results

4.1 Target quantities for model selection

We aim at getting as close as possible to the truth both in terms of the
expected prediction (RMSE) and in terms of variability. For the later, we
compute the mean difference between predicted uncertainty and standard
deviation of the input noise σϵ,

∆σ =
1

N

∑
i

σ∗(xi)− σϵ,i. (3)

4.2 DLGP performance

As we can see in Fig. 2, the RMSE steadily decreases with the number of
input points. Moreover, we observe that the covariance function is crucial
to the performance of the algorithm. Over the whole range of input points,
the Matérn kernel with ν = 3

2 performs equally or better than a Gaussian
kernel while keeping all other parameters the same.
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FIGURE 2. Example of the performance of our version of the DLGP on the
GAMBIT data. The crosses are the RMSE aggregated over 1000 data points. The
parameters of both DLGPs where identical except for the covariance function. In
the case of the red crosses, a Gaussian kernel was used. Similarly, a Matérn kernel
with ν = 3

2
was used for the blue crosses. We can clearly see that choosing the

Matérn kernel leads to improved results. The other parameters for the DLGP are
N̄ = 100, splitting along the first principal component while using the median as
center. A linear overlap shape with 1% overlap was used.
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In Fig. 3, we see that σ∗ converges to σϵ and remains in its vicinity after-
wards. This shows that the DLGP has learned to estimate the variability
of the training points to an adequate degree.
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predicted uncertainty (blue) vs standard deviation of input noise (orange)

FIGURE 3. Example of the performance of our version of the DLGP on the
GAMBIT data. The blue crosses are the predicted uncertainty aggregated over
1000 data points. The orange crosses are the aggregated σϵ values. We observe
that σ∗ converges to σϵ remains in its vicinity afterwards. For this DLGP, the
following parameters where chosen: Matérn kernel with ν = 3

2
, N̄ = 100, splitting

along first principal component while using the median as center. A linear overlap
shape with 1% overlap was used.

4.3 Sensitivity Analysis

A grid-search is performed to find the best combination of hyperparameters.
We explore 96 different GP tree configurations and perform tests both with
the data from the GAMBIT Collaboration (2019) and the SARCOS data
used in Lederer et al (2020). Due to the computational expense, we use only
the 50000 first data points in these initial tests. For the most promising GP
tree configurations we then carry out tests using the full data sets.
When describing the performance of the tree, we refer to an improvement
if a parameter improves on RMSE and ∆σ. We observe that the choice of
covariance function impacts the performance the most. The Matérn kernel
function with ν = 3

2 clearly outperforms the other kernels. In agreement
with the SARCOS study, we observe that for the GAMBIT data a larger
maximum number of points per leaf N̄ improves the result. Furthermore,
increasing the overlap between the sibling leaves yields improvements with
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regards to the RMSE, in contrast to the SARCOS results of Lederer et al
(2020). However, σ∗ tends to be larger and less consistent for larger over-
laps as ∆σ is significantly larger in this case. The overlapping shape has
a consistently insignificant contribution to the performance. There seems
to be a connection between using the median to define the center of the
splitting dimension and splitting along the first principal component: Using
the median instead of mean decreases the performance if all other param-
eters are equal, and the same is true for splitting along the first principal
component instead of the dimension with maximum variance. However, the
aforementioned combination performs equally well as mean and maximum
variance as splitting criterion.

5 Conclusion

In this paper, an application of dividing local Gaussian processes (Lederer
et al, 2020) is elaborated. In the presented theoretical physics use case, the
focus lies more on high quality than fast predictions. We showed that it is
worth considering improvements to the original algorithm. In particular we
showed that working on the covariance function can have a large impact
on the results. We believe that this online learning algorithm can also be
applied in other fields where fast and continuous updating is relevant, such
as finance or chemistry.
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Abstract: In this work, we propose an extension of a semiparametric nonlinear
mixed–effects models for longitudinal data that incorporates more flexibility with
penalized splines (P–splines) as smooth terms. The novelty of the proposed ap-
proach consists of the formulation of the model within the stochastic approxima-
tion version of EM (SAEM) for maximum likelihood estimation. The formulation
of a P–spline as a mixed–effects model allows for the use of the the computational
advantages of the existing software for the SAEM algorithm by constructing the
basis functions and model matrices required in the modelling and the variance
components to be estimated. We apply the proposed method to the classification
of two groups of pregnant women to the risk of miscarriages. We perform the clas-
sification of these nonlinear mixed models using an adaptive importance sampling
scheme. From this point of view, the proposed models improve the analysis of
this type of data concerning previous studies. These improvements are reflected
both in the fit of the models and in the classification of the groups.

Keywords: Nonlinear mixed models; SAEM algorithm; P-splines.

1 Semiparametric nonlinear mixed-effects model

A special semiparametric nonlinear mixed-effects (SPNLME) model pro-
posed by Ke and Wang (2001) can be expressed as:

yij = η(ϕi, Zij) + f(tij) + ϵij , i = 1, . . . , N, j = 1, . . . , ni (1)

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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where yij ∈ R is the j-th observation of individual i, Zij is a vector of known
regressor variables including the j-th time of individual i, denoted by tij ,
η is a known function of Zij and individual parameters ϕi, and f is an
unknown function. We assume that ϕi can be modelled parametrically as
a function of fixed effects β, and individual random effects ζi, i = 1, . . . , n
such as ζi ∼ N (0,Σ). We propose to use P–splines (penalized splines with
B–splines as basis functions and discrete order penalties) to model f due to
its flexibility and the fact that they can be written in the form of a mixed
model. Then the function f described in (1) can be written as:

f(tij) = α0 + α1tij + · · ·+ αSt
S
ij +

K∑
k=1

bikZk(tij)
s, (2)

where Zk, 1 ≤ k ≤ K, is an appropriate spline basis and S is the degree
of the basis and bik is a random effects such as bik ∼ N (βbk , σ

2
k) for k =

1, . . . ,K. The fixed effects are then βββ = (β,α,βb), with α = (α0, . . . , αS)
and βb = (βb1 , . . . , βbK ). The vector of random effects ψ = (ϕ, b), where
ϕ = (ϕi)i=1,...,n and b = (bk)k=1,...,K , follows a Multivariate Normal dis-
tribution with covariance matrix Γdiag(Σ, σ2

b1
, . . . , σ2

bK
).

We propose to obtain the maximum likelihood in the SPNLME model
defined in (1)-(2) to use the stochastic approximation version of the
EM (SAEM) (Delyon et al., 1999) since the random individual effects,
Ψ = (β, b), are treated as non-observed data. The SAEM algorithm is
implemented in the R library saemix and the SPNLME model described
below can be easily fitted using R.

Classification

In the SPNLME model defined in (1), we have Y
(m)
i ∼

Nni
(η(ϕi, f ;Zi), σ

2), where f(·) is defined in Equation 2. Let us
consider an individual comes from the sub–population Kℓ, the response
vector Y , taken at arbitrary times T = (t1, t2, · · · , tn) has pdf qℓ(Y ; θℓ),
where θℓ is the set of parameters associated with this distribution. If we
assume that π1, π2, · · · , πm are the prior probabilities of belonging to the
sub-population, the Bayes rule to classify Y in the population Kg is

log πg + log qg(Y ; θg) = max
ℓ

{log πℓ + qℓ(Y ; θℓ)} , ℓ = 1, 2, · · · ,m (3)

where πℓqg(Y ; θℓ) is proportional to the posterior distribution of belong-
ing to population ℓ. Unlike the case of linear mixed-effects models, the
marginal densities corresponding to SPNLME models involve integrals with
no closed-form solution. We propose to use the Importance Sampling (IS)
method to find the pdf ql and evaluate the classification rule described in
Equation 3. The IS is based on the conditional distribution of the random
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effects p(ψ|y;θ) which is obtained using the empirically estimated mean

E(ψi|yi; θ̂) and conditional variance V (ψi|yi; θ̂) of ψi for each subject
i = 1, . . . , n. These quantities can be easily obtained from the simulation-
step of SAEM at convergence.

2 Application: The pregnant women dataset

The data set consists of repeated measures of β–HCG concentration levels
taken over a period of two years on 173 different pregnant women divided
in two groups: (i) pregnancies with a normal development that came to
term without important complications (124 individuals); and (ii) a group
of abnormal pregnancies with serious anomalies that ended up with the loss
of the fetus (49 individuals). Measurements were recorded at different times
for each woman during the first trimester of pregnancy. It is well known
that the β–HCG concentration levels in the two groups follow different
patterns (see Figure 1).The SPNLME considered here is

yij =
ai

1 + exp [−(tij − bi)/ci]
+ α0 + α1tij +

12∑
d=1

bidZ
(d)
ij + ϵij (4)

where yij is the j-th concentration of the β–HCG hormone of the i-th
woman at time tij with i = 1, . . . , N, j = 1, . . . , ni; ϵij ∼ N (0, σ2) for
each woman i; ai is the asymptotic level of the hormone β–HCG; bi rep-
resents the time in which the woman reaches half the asymptotic level of
the hormone; ci is the time elapsed for the woman to reach between half
and three quarters of her asymptotic hormone level; α0 is the intercept of

the model; α1 is a linear term over time tij ; Z
(d)
ij are the values of the d-th

regressor variables in time tij for d = 1, . . . , 12; bid ∼ N (0, σ2
d) for all i and

d = 1, . . . , 12.

Results

The SPNLME model with 12 nodes shows better performance than para-
metric NLME with one and three parameters based on for example the
Visual Predictive Checks (VPC). The VPC plots allow us to graphically
assess whether the model simulations can reproduce both the central ten-
dency and the variability of the observations over time since they compare
the empirical percentiles of the data (here 5th, 50th and 95th percentiles)
and the theoretical percentiles of simulated data and their respective pre-
diction intervals. We observe also better results with our model in classi-
fication rates and ROC curves (see Tables 1-2 and Figure 2). In Table 1
we summarize the global classification error for the semiparametric model
(SPNLME) and the two parametric NLME model with one and three
random effects, respectively denoted by NLME(1) and NLME(3). We see
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FIGURE 1. Observed profiles of log10 (β −HCG) for the abnormal group (left
panel) and normal group (right panel).

that our semiparametric model improves the classification compared to the
classical NLME model with one random effects proposed by Marshall and
Barón (2000) since we observe a decrease of 28% in the classification error
rate using Leave–one out Cross Validation (LOOCV). The decrease in the
error rate is lower between our semiparametric model and the NLME model
with three random effects (8% using LOOCV) but in the same way we can
observe a better performance with our model. In Table 2 we compare the
classification results in both groups, normal and abnormal pregnancies, for
the semiparametric model (SPNLME) and the two parametric NLME mod-
els. As can be seen in Table 2 for the NLME(3) model, using LOOCV, 119
individuals are being well classified in the normal group and 29 individuals
in the abnormal group. This classification improves when implementing the
SPNLME additive model, obtaining an improvement in the classification of
the normal group since 122 women are being well classified in the normal
group. However, we can note that the improvement is due to better classifi-
cation of the individuals of the normal group, whereas the misclassification
error rate of the abnormal group remains constant. Based on this classifi-
cation table and also looking at the AUC’s for each model, we can see that
the semiparametric additive model allows to improve the classification of
pregnant women in the two groups and allows a better fit to the data (see
VPC figures).

Acknowledgments: This work was funded by ANID-FONDECYT grants
1190801 and 1181662 (Chile).
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TABLE 1. Error rate in the pregnancies dataset: SPNLME vs parametric NLME
models using one (Marshall and Barón, 2000) and three random effects.

Error rate NLME(1) NLME(3) SPNLME

Within sample 0.156 0.139 0.121
Leave-one out CV 0.185 0.145 0.133

TABLE 2. Classification of the NLME(3) and SPNLME models via Importance
Sampling using the SAEM algorithm. The results are compared with the model
NLME(1) from Marshal and Barón (2000)

.

Group NLME(1) NLME(3) SPNLME Total

N A N A N A Total (173)

Within sample
Normal 118 6 120 4 122 2 124

Abnormal 21 28 20 29 19 30 49

Leave-one-out CV
Normal 113 11 119 5 121 3 124

Abnormal 21 28 20 29 20 29 49

N = Normal; A = Abnormal.
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Abstract: Envelope models are linear models that assume a geometric relation
between covariates and predictors to increase the efficiency of estimation, by
assuming that not all predictors are influenced by covariates. In this work, we
present finite mixture of envelopes, from a Bayesian perspective, to relax the
hypothesis that the same subset of covariates is is not relevant in prediction
across all data. We conduct a simulation study to obtain a first assessment of the
impact of the choice of the number of components on model fitting.
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1 Bayesian Mixture of Envelope Models

1.1 Introduction to Envelopes

Envelope models, (Cook et al. (2010) and Cook and Zhang (2015)), are a
class of models whose objective is to increase the efficiency of multivariate
regression by positing a stochastic relation between responses and predic-
tors. The framework is as follows: given a series of random variables Yi ∈ Rr

we assume that
Yi = µ+ βXi + εi, i = 1, . . . , n. (1)

We have that {Xi}ni=1 is a sequence of non-stochastic vectors, with Xi ∈ Rp

for i = 1, . . . , n, the errors are independent and identically normal dis-
tributed with zero mean and covariance Σ, µ ∈ Rr is an unknown vector of
intercepts and β ∈ R(r×p) (where R(a×b) denotes the space of real matrices
of dimensions (a, b)) is the unknown vector of regression coefficients.
The intuition behind envelope models is that not all linear combinations
of responses might be influenced by variations in the non-stochastic pre-
dictors. From a mathematical point of view, this is akin to assuming that
there are two matrices Γ and Γ0 such that O = [Γ Γ0] is orthogonal, that
ΓT
0 Y |X ∼ ΓT

0 Y and ΓTY ⊥ ΓT
0 Y |X.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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The conditions above entail that span (β) ⊆ span (Γ) and Σ = Σ1 + Σ2 =
PΓΣPΓ + QΓΣQΓ, where P(·) is the orthogonal projector operation on a
space and Q(·) = I −P(·) is the projection on the orthogonal space. In this
scenario, span (Γ) is a reducing subspace of Σ (Cook et al. (2010)). The
Σ-envelope of B = span (β), EΣ (B), is the smallest reducing subspace of Σ
that contains B.
Model in Eq. (1) can be rewritten as

Yi = µ+ ΓηXi + ε,

where β = Γη, Γ ∈ R(r×u) is an orthogonal basis of EΣ (B) and u is the
dimension of the envelope EΣ (B). Moreover, the variance is Σ = Σ1+Σ2 =
ΓΩΓT +Γ0Ω0Γ

T
0 , where Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) are two diagonal

matrices carrying the coordinate information with respect to the basis Γ
and Γ0.

1.2 Mixtures of Envelopes

In this work, we consider a finite mixture of envelopes. The goal is to relax
the hypothesis that the combination of points with respect to which the
responses are invariant be fixed across all data points.
Our proposal draws on Khare et al. (2017), whose contribution is the only
Bayesian formulation of envelope models to the best of our knowledge.
Assuming to have K components, the prior distribution is defined on the
parameters θk = (µk, ηk, (Γk,Γ0,k) ,Ωk,Ω0,k). We constrain Ωk and Ω0,k to
be diagonal matrices with entries disposed in decreasing order to preserve
identifiability.
To aid in the formulation of the model, we consider a set of auxiliary
variables {Zi}. Each Zi takes value in {1, . . . ,K} and represent the cluster
to which point i is assigned.
The likelihood is then defined as

Yi|Zi = k, xi ∼ N
(
µk + Γkηkxi,ΓkΩkΓ

T
k + Γ0,kΩ0,kΓ

T
0,k

)
,

Zi ∼ M (ρ1, . . . , ρK) .

For each component k, the prior is defined as follows:

1. µk is set to be independent from the other parameters. We endow it
with a multivariate normal distribution, so that π (µk) = Nr (µ0,Σ0),

2. The conditional prior on ηk is a matrix normal:

π (ηk| (Γk,Γ0,k,Ωk,Ω0,k)) = N(u,p)

(
ΓT
k ,Ωk, C

−1
)
,

where C−1 is a positive definite matrix in Rp×p.
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3. The prior on Ok = (Γk,Γ0,k) is a matrix Bingham distribu-
tion with parameters G and D, where G is a positive semi-
definite matrix in Rr×r and D has ordered positive entries.
Thus, π (Ok) = B(r,r)

(
G,D−1

)
. The density is proportional to

exp
{
(−1/2) tr

(
D−1OTGO

)}
4. Denoting by ωk and ω0,k the diagonal vectors of, respectively, Ωk and

Ω0,k, we assume that, a priori, they are distributed as order statistics
of u and r − u independent and identically distributed observations
from Inverse-Gamma distributions of shape and rate parameters α,
ψ and α0, ψ0.

Moreover,

(ρ1, . . . , ρK) ∼ Dir (γ1, . . . , γK) .

As it is not possible to compute the exact posterior of the model, we rely on
a Gibbs sampler to obtain estimates from a chain whose ergodic distribution
is what we wish to sample. The sampler is adapted from Marin et al. (2005)
and Khare et al. (2017).

TABLE 1. Parameters employed to generate the simulated dataset. Notice that
for η and µ, we only reported the coefficients that premultiply matrices or vectors
made up of ones for brevity. ω and ω0 are the elements of the diagonal matrices
Ω and Ω0.

Parameter Cluster 1 Cluster 2 Cluster 3

Γ
(
1, 0, 0

)T (
0, 1, 0

)T (
0, 0, 1

)T
Γ0

(
0, 1, 0
0, 0, 1

)T (
1, 0, 0
0, 0, 1

)T (
1, 0, 0
0, 1, 0

)T

η 1.9 1.5 -6.0
µ 1.2 0.0 -2.0
ω 6.2 6.2 6.2

ω0

(
3.2, 1.4

)T (
3.2, 1.4

)T (
3.2, 1.4

)T

2 Simulation Study

We tested the model on simulated datasets in order to gain a better un-
derstanding of the performance of the model. We wish to see how varying
the number of components of the mixture affects the results. We set r = 3,
u = 1, p = 2 and n = 180.
The dataset is made of three clusters, the values are reported in Table 1. We
fit the model with k = 2, k = 3 and k = 8. We run three Markov chains for
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TABLE 2. Posterior means of the βs fitted on the simulated data.

k Cluster 1 Cluster 2 Cluster 3

2

2.3056, 1.6963
0.0667, 0.0492
0.0895, 0.0658

  0.0203, 0.0192
0.0142, 0.0135

−5.983,−5.6864


3

2.3056, 1.6963
0.0667, 0.0492
0.0895, 0.0658

  0.0203, 0.192
0.0142, 0.0135

−5.983,−5.6864

  −0.382,−0.0464
1.4247, 1.6901

−0.0859,−0.1016


8

 −0.0425,−0.049
1.5161, 1.7249

−0.0859,−0.0958

  −0.0185, 0.0175
0.014, 0.0133

−5.9804,−5.6775

 2.2976, 1.7204
0.0573, 0.043
0.088, 0.0661



3000 iterations and consider the first 1000 to be of burn-in. Main results
are reported in Table 2. When k = 2, we obtain a first cluster with an
average number of 67 observations and a second cluster of 113 observations
on average. What is interesting is the reconstruction of the βs, as the first
cluster resembles the third simulated cluster and the other two are joint
together. When k = 3, the reconstruction yields clusters that, on average,
have 61, 65 and 53 members. Again, we see a specialisation of each cluster
to mimic one of the three true classes. To conclude, when k = 8, the clusters
on average have the following cardinality: 49, 0, 66, 0, 61, 1, 0, 1. We see
that three main clusters are more populated than the rest and we see that
those clusters do tend to resemble the original ones.

References

Cook, R.D., Bing, L., and Chiaromonte, F. (2010). Envelope models for
parsimonious and efficient multivariate linear regression. Statistica
Sinica, 60, 927 – 960.

Cook, R.D., and Zhang, X. (2015). Foundations for Envelope Models and
Methods. Journal of the American Statistical Association, 110, 599 –
611.

Khare, K., Pal, S., and Su, Z. (2017). A Bayesian approach for envelope
models. The Annals of Statistics, 45, 196 – 222.

Marin, J-M, Mengersen, K., Robert, C. P. (2005). Bayesian Modelling
and Inference on Mixtures of Distributions. Handbook of Statistics,
25, 459 – 507.

237



Statistical Information-Criteria-Based Neural
Network Input and Hidden Node Selection

Andrew McInerney1, Kevin Burke1

1 University of Limerick, Ireland

E-mail for correspondence: andrew.mcinerney@ul.ie

Abstract: Feedforward neural networks (FNNs) have many similarities to the
models typically used in statistical modelling. The calculation of an associated
likelihood function opens the door to information-criteria-based variable and
architecture selection. A novel model selection method is proposed using the
Bayesian information criterion for FNNs, wherein the optimal weights for one
model are carried over to the next.

Keywords: Neural networks; model selection; variable selection.

1 Introduction

FNNs can be used for a variety of problems, and, in particular, they are use-
ful for non-linear regression. These models consist of an input layer, which
allows the covariates to enter the model; one or more hidden layers, which
determine the complexity of the model; and an output layer, which provides
the model’s prediction. Although FNNs have similarities to the models typ-
ically used in statistical modelling, the majority of neural network research
has been conducted outside of the field of statistics (Hooker and Mentch,
2021). This has resulted in a lack of statistically-based methodology, such
as model and variable selection, which focus on developing parsimonious
models. Instead, neural networks are viewed as ‘black-box’ models—with
the level of complexity not of great concern (Efron, 2020). Thus, many neu-
ral networks are over-parameterised and miscalibrated (Sun et al., 2022).
Employing a more statistical approach to model selection can allow for
simpler, and, hence, more stable neural networks.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Feedforward Neural Network

We assume a model of the form

yi = γ0 +

q∑
k=1

γkϕ

 p∑
j=0

ωjkxji

+ εi

where yi is the response for the ith individual with covariate vector xi =
(1, x1i, x2i, . . . , xpi)

T, p is the number of input nodes (covariates), q is the
number of hidden nodes, and εi is a random error that we assume to have
a N(0, σ2) distribution. The parameters are: ωjk, the weight that connects
the jth input node to the kth hidden node; γk, the weight that connects
the kth hidden node to the output node; and γ0, the bias term associated
with the output layer. The function ϕ(·) is the activation function for the
hidden layer, which is often a logistic function. Given our assumption that
εi ∼ N(0, σ2), we will use maximum likelihood to estimate the parameters.

3 Model Selection

Model selection in FNNs requires two decisions: the optimal set of input
nodes, and the optimal number of hidden nodes. Our proposed method
aims to determine both of these using a stepwise-BIC procedure. We take
a ‘top-down’ approach, where a large model is considered initially, where all
subsequent smaller models are initialised using warm starts. This ensures
that all candidate models lie in a similar region of the objective function,
which allows for fairer model comparison. A schematic of the model selec-
tion method is shown in Figure 1, and is described at a high level in the
following paragraphs.

FIGURE 1. Model selection schematic. Nodes coloured grey are being considered
in current step. Nodes coloured gold represent optimal nodes.

As with all model selection methods, a set of candidate models must be
considered. For the input layer, we can have up to pmax inputs, where pmax

239



McInerney and Burke

is the maximum number of covariates being considered, and, is defined by
the data available. For the hidden layer, we must specify a qmax value, which
is the maximum number of hidden nodes to be considered. This controls
the complexity of the candidate models. We can then have between one
and qmax nodes in the hidden layer.

The model selection procedure begins by determining the optimal number
of hidden nodes. We start by fitting the largest possible FNN with pmax

covariates and qmax hidden nodes. This model is supplied with random
vectors of initial parameters, the log-likelihood function is maximised (over
the different random initial vectors), and the optimal parameters are found.
Given this optimal model with qmax hidden nodes, the importance of each
hidden node is assessed by dropping each node in turn, reoptimising the
log-likelihood function (using the optimal parameters from the larger model
as initial values), and comparing the BIC of each model. The hidden node
that is least important (i.e., the one that resulted in the lowest BIC when
removed) is then dropped from the model. This process is repeated with
qmax − 1 hidden nodes (where random initial vectors are again generated),
and continued until all q = 1, . . . , qmax models have been fitted. Then, the
optimal number of hidden nodes, q̂, is determined using the BIC.

Once q̂ has been found, model selection switches focus to the input layer.
Similar to the hidden node selection, each input node is dropped in turn,
the log-likelihood function is reoptimised, and the optimal parameters and
associated BIC value are obtained. If the removal of a given input covariate
results in a lower BIC value than the full model, that input node is dropped.
This is repeated until no covariate, when removed from the model, results
in a lower BIC. This yields the optimal set of covariates.

Both the hidden layer and covariate selection stages are backward elimina-
tion procedures, but with random initialisations and warm starts for sta-
bility in the neural network context. We use the phrase “optimal” loosely
above, since we then follow up the previous two stages with a fine-tuning
stage that looks for improved solutions in a neighbourhood of the previous
“optimal”. This is done by considering the addition or removal of one hid-
den node, then the addition or removal of one input node, and these two
steps are repeated alternately until no further adjustment decreases the
BIC. This fine-tuning stage is analogous to stepwise model selection with
backward and forward steps.

4 Simulation

The performance of the proposed model selection method was evaluated
using a simulation study. We simulated data from an FNN with three in-
put nodes and three hidden nodes. The weights were generated so that
there are three important inputs, x1, x2, x3, with non-zero weights, and ten
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unimportant inputs, x4, . . . , x13, with zero weights. Each simulation was
repeated 1,000 times, for different sample sizes (n = 250, 500, 1000).

The metrics calculated to evaluate the performance of the proposed method
are the average number of true zero weights correctly dropped from the
model (C), the average number of true non-zero weights incorrectly dropped
from the model (IC), the probability of choosing the correct set of inputs
(PI), the probability of choosing the correct number of hidden nodes (PH),
and the probability of choosing the true model (PT). The results of the
simulation study are in Table 1.

TABLE 1. Model selection metrics.

n C(10) IC(0) PI PH PT

250 8.200 0.002 0.726 0.429 0.269
500 8.424 0.000 0.765 0.780 0.591
1000 9.679 0.000 0.958 0.948 0.936

5 Discussion

The proposed approach takes a statistical approach to neural network
model selection through a likelihood function, and, hence, BIC. It also
implements warms starts, which aims to keep the neural network learn-
ing algorithm in the same weight space region across all candidate models.
Our results above demonstrate the favourable performance of the procedure
with increasing sample size. Some other interesting findings, to be discussed
in our presentation, are that the fine-tuning stage provides a non-negligible
improvement and that input node (covariate) selection does not perform
well when the hidden layer structure is misspecified (even if the correct
hidden structure is a sub-model of the one assumed).

Acknowledgments: This work has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant Num-
ber 18/CRT/6049.
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Abstract: We investigate the potential effects of in-game dynamics on betting
behaviour. Considering two comprehensive data sets from the 2017/18 Bundesliga
season comprising in-play betting volumes and match events, we use state-space
models to analyse the dynamics and drivers of betting volumes. Within this
state-space framework, we use (penalised) B-splines to model the potentially
time-varying effect of in-game dynamics as implied by measurable events such as
shots and passes. Preliminary results suggest that volumes in the in-play market
are driven by such in-game dynamics and that this effect varies over the course
of a match.
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1 Introduction

The revenue of gambling markets has considerably increased in recent years,
with about 40 billion euro generated from sports betting in Europe in 2021.
Sports betting takes place both in the pre-game (bets placed before kick-
off) and in the in-play (bets placed during matches) market, where the
latter market accounts for about 55% of the overall volume.
Despite the relatively high demand for in-play betting, empirical research
to date has largely focused on the pre-game market. To investigate the cor-
responding drivers of bet placements in the in-game market, we consider
two comprehensive data sets from the 2017/18 Bundesliga season, compris-
ing 1) minute-by-minute betting odds and volumes and 2) information on
events such as shots on goal, passes, and tackles.
The first data cover bets on the match outcome, i.e. home win or away win
(we exclude bets on a draw from our analysis). These data are aggregated
into intervals of one minute. The response variable in our analysis is the

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Time series of the relative stakes placed on a win of Hamburger SV
for one example match from the data set (Hamburger SV vs. Werder Bremen).
The vertical bars denote the differences between both teams’ VAEP values from
the perspective of Hamburger SV.

relative stake placed on each team, where for each interval we divide the
amount of stakes placed on each team by the total amount placed on either
team.
Our final data set comprises N = 306 time series, {yn,t}, n = 1, . . . , 306,
with t, t = 1, . . . , T , indicating the minute of the match. Towards the end of
a match, much less stakes are placed, such that we truncate all time series
at minute t = 85, resulting in a total of 26 010 observations of relative
stakes.
To investigate the drivers of betting behaviour, we consider two covariates.
First, we use the Elo rating (taken from http://clubelo.com/) as a proxy
for the pre-game strength of a team. Second, to additionally investigate the
effect of in-game actions on the stakes placed, we consider data on in-game
events provided by the company WyScout. Using such in-game events, we
consider the so-called Valuing Actions by Estimating Probabilities (VAEP)
approach by Decroos et al. (2019). The VAEP measures the value of any
action, e.g. a pass or a tackle, with respect to both the probability of scoring
and the probability of conceding a goal. For both covariates, we consider
the difference between the two teams’ values in each 1-minute interval, i.e.
between the Elo ratings (elodiff ) and between the VAEP values (vaepdiff ).
Figure 1 shows an example time series of the relative stakes along with the
associated vaepdiff values.

2 Model formulation

For the example time series shown in Figure 1, we observe a fairly high
serial correlation. The correlation is induced by the market progressing
through different phases, corresponding for example to extended periods
of time with bets placed predominantly on the home team (cf. minutes
25–65 in Figure 1). In our modelling framework, such different phases are
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captured by a latent variable within a state-space model (SSM).
For the relative stakes yt with support [0, 1], we use the beta-inflated distri-
bution (BEINF) as an extension of the regular beta distribution to account
for the fact that in some intervals stakes are placed on one team only (in
which case yt = 0 or yt = 1). We follow the parametrisation proposed by
Rigby et al. (2019), such that

yt ∼ BEINF(µt, σ, p, q), with f(yt) =


p, if yt = 0;

(1− p− q)h(yt), if 0 < yt < 1;

q, if yt = 1,

for 0 ≤ yt ≤ 1 and h(yt) being the density function of the regular beta
distribution.
To account for the dynamic nature of the relative stakes within matches as
indicated by Figure 1, the mean µt is assumed to be time-varying and is
modelled as follows:

µt = logit−1(α0 + gt + αelodiff). (1)

The unobserved variable corresponding to the market phase, gt, is modelled
as an AR(1) process, with additional covariate dependence:

gt = ϕgt−1 + βvaepdifft−1 + ωηt, (2)

with ηt
iid∼ N (0, 1), ω > 0.

Due to the dynamic nature of football matches, it may very well be the
case that the effects of elodiff and vaepdiff vary over time. To account for
this in our modelling framework, we replace α and β in Eqs. (1) and (2) by
time-varying parameters αt and βt. To avoid a priori assumptions on the
functional forms of αt and βt, we model these functions nonparametrically
using B-splines. Specifically, αt and βt are modelled as linear combinations
of a finite number of section-wise defined basis functions,

αt =
K∑

k=1

ναkBk(t), βt =
K∑

k=1

νβkBk(t), (3)

for t = 1, . . . , 85, where B1, . . . , Bk, k = 1, . . . ,K, are fixed, equidistant
B-spline basis functions of order three.
To prevent overfitting, we add a roughness penalty term, thus considering
P-splines (Eilers and Marx, 1996). The resulting penalised log-likelihood
function is then given as follows (cf. Langrock et al., 2017):

ℓp = log
(
Lapprox

)
− λα

2

K∑
k=3

(∆2ναk )
2 − λβ

2

K∑
k=3

(∆2νβk )
2, (4)

with the unpenalised likelihood function Lapprox (see Zucchini et al., 2016),
the second-order differences ∆2νk = νk − 2νk−1 + νk−2, and smoothing
parameters λα and λβ .
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FIGURE 2. Time varying P-spline effects of the Elo variable (λα = 5000) as well
as the VAEP variable (λβ = 10). The white area indicates the intervals data was
considered for. The grey area indicates where outer knots are set.

3 Results

The varying coefficient SSM was estimated using K = 10 basis functions.
The results confirm a fairly high serial correlation in the state process
(ϕ̂ = 0.971). For the time-varying effects, we used the AIC to select the
tuning parameters λα and λβ from a specified grid, with the optimal choice
being (λα, λβ) = (5000, 10). The estimated time-varying effects of elodiff
and vaepdiff are shown in Figure 2. The effect of elodiff on bet placement
is estimated to be positive throughout the match, but with the effect size
decreasing as the match progresses. In contrast, for vaepdiff we find a highly
non-linear functional form of the effect size over time, with the strongest
effect found towards the end of the match.
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1 Motivating Problem and Data Description

Motivating Problem. Assessing the airports’ runway conditions is cen-
tral for the aviation industry. To activate appropriate safety procedures and
avoid accidents, pilots need to be informed before landing about the avail-
able friction on the runways. Rapid changes in weather conditions and the
impossibility of constantly stopping the air traffic to mechanically assess
the friction, drive the need for data-based approaches.

FRICTION data. To perform this task, Avinor, the largest airport oper-
ator in Norway, provided us with a large data set about 16 Norwegian air-
ports, out of which we select the part related to Oslo Airport Gardemoen.
The dataset includes weather data (wind speed, temperature, humidity,
precipitation, etc.), runway reports (type of runaway contamination, use of
sanding, chemicals, etc.), and flight data (acceleration, brake pressure, flap
position, etc.). While weather data and runaway reports are used as co-
variates, flight data are used to compute the response. The runway friction
is indeed computed based on the deacceleration of the airplane during the
landing. Unfortunately, this information is censored, as often the pilots do

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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not need to use all the available friction. When instead they fully apply the
brakes, the maximum attainable friction from the runway is recorded. In
statistical words, this is the event. For the other observations, we only know
that the true runway friction is larger than that actually used (right censor-
ing). In total, we have 15154 observations (690 events) and 106 covariates
(see Table 1 for the complete list).

TABLE 1. Overview of the available information.

Weather information Runway information

Sand Precipitation Intensity (lag 0, 1, 3, 6, 12, 24 h.)
Warm Sand Air Temperature (lag 0, 1, 3, 6, 12, 24 h.)
Deice Runway Temperature (lag 0, 1, 3, 6, 12, 24 h.)
Aice Runway Temp. Trend (wrt 1, 3, 6, 12, 24 h.)
Contamination Depth Relative Humidity (lag 0, 1, 3, 6, 12, 24 h.)
Contamination Cover Relative Humid. Trend (wrt 1, 3, 6, 12, 24 h.)
Contamination Dry Air Pressure (lag 0, 1, 3, 6, 12, 24 h.)
Contamination Wet Air Pressure Trend (wrt 1, 3, 6, 12, 24 h.)
Contamination Solid Dew Point (lag 0, 1, 3, 6, 12, 24 h.)
Contamination Loose Horizontal Visibility (lag 0, 1, 3, 6, 12, 24 h.)
Contamination Base Precipitation Type (lag 0, 1, 3, 6, 12, 24 h.)

Dry Snow (+ cumulated by 1, 3, 6, 12, 24 h.)
Wet Snow (+ cumulated by 1, 3, 6, 12, 24 h.)
Sleet (+ cumulated by 1, 3, 6, 12, 24 h.)
Rain Rain
Wind Direction
Maximum Wind Speed
Mean Wind Speed
Along Wind Speed
Across Wind Speed
Absolute Air Temperature
Absolute Runway Temperature
Airport Runway

Aim. Previous works only used the uncensored data to estimate the runway
conditions (see, e.g., Midtfjord et al, 2021). Since 95% of the landing are
censored observations, it seems reasonable to develop an approach that
also includes the latter in the analysis. While currently available boosting
algorithms based on classical survival models can help in handling censored
observations, they cannot be directly used in this situation as they are
based on the assumption of independent censoring. This is not realistic in
our problem. The lower the available friction, the higher the chances of
fully applying the brakes. For this reason, we develop a boosting algorithm
to model censored data with dependent censoring.
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2 Model

Boosting. To construct our prediction model, we start from the work of
Midtfjord et al (2021), who show the excellent performance of a gradient
boosting approach for this kind of problem. Gradient boosting (Friedman
et al., 2000) is a forward stagewise additive procedure that builds the model
by iteratively including small improvements to it. Practically, it minimises
the empirical risk function (the empirical counterpart of the loss function)
by fitting a function, called base learner, to the negative gradient of the loss
function. The base learner can be any function that relates the covariates
to the response, in our case, regression trees. See Table 2 for a schematic
view of the gradient boosting algorithm.

TABLE 2. Schematic view of the gradient boosting algorithm.

Gradient boosting

1: Initialize ĥ(x);
2: Update the model by, for k = 1, . . . ,K,

2.1: computing the negative gradient of the loss function at the
current model;

2.2: obtaining the improvement ĥk(x) by fitting the base learner
on the negative gradient;

3: Aggregate the results, ĥ(x) =
∑K

k=0 ĥk(x).

Accelerated Failure Time model. We base our loss function on the
negative log-likelihood of an Accelerated Failure Time (AFT) model (Pike,
1966). Although less popular than the Cox model, the AFT model suits
well our case because it directly relates the response T to the covariates X,

log(T ) = h(X) + ϵ, (1)

where h : Rp → R captures the effect of X on the response, and ϵ is the
error, that follows a baseline distribution Z, with mean 0 and variance
σ2
Z . Typical choices for the probability distributions of T are the Weibull,

the log-normal and the log-logistic distributions, which lead the baseline
function Z to be Gumbel, normal and logistic distributed, respectively.

Clayton copula. In order to take into account the dependent censoring
mechanism, we take advantage of the Clayton copula (Clayton, 1978). As
any copula, it allows expressing the joint distribution, in this case of the
friction and censoring scheme, as a function of the marginals. The Clayton
copula is among the simplest copulas, as it has only one parameter and does
not require any logarithmic or exponential operation (Wang et al, 2010).
Given the general definition of (an Archimedean) copula,

Cθ(u, v) = ϕ−1
θ

(
ϕθ(u) + ϕθ(v)

)
,
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indeed, for the Clayton copula

ϕθ(t) =
t−θ − 1

θ
and ϕ−1

θ (t) = (tθ + 1)−
1
θ ,

where the parameter θ is strictly larger than 0. The Clayton copula is
particularly suitable for our problem because it exhibits greater dependence
in the lower tail, but our approach works in principle with any type of
copula (Gumbel, Frank, . . . ).

The copula-based boosting model. To implement our boosting algo-
rithm, in addition to the regression trees that we chose as a base learner,
we need to specify the loss function. Starting from (1) and including the
copula, we obtain

lossi =
(
1+ 1

θ

)
log

(
(1−FZ(s(ti)|xi))

−θ+(1−FV (r(ti)|xi))
−θ−1

)
+g(ti, δi)

where

g(ti, δi) =

{(
1 + θ) log

(
1− FZ(s(ti)|xi)

)
− log

(
fZ(s(ti)|xi)

1
σZti

)
if δi = 1(

1 + θ
)
log

(
1− FV (r(ti)|xi)

)
− log

(
fV (r(ti)|xi)

1
σV ti

)
if δi = 0,

(ti, δi,xi) is the i-th observation, made of the measurement of the friction
ti, the indication of the use of the anti-skid system δi, and the values of
the covariates, xi; θ > 0 is the parameter of the Clayton copula; s(ti) =

(log ti − ĥ(xi))/σZ ; r(ti) = (log ti − ĥ(xi))/σV ; F and f are the CDF and
the PDF of the random variable shown in the subscript; Z and V come
from (1), for the friction and the censoring, respectively; and, finally, σ2

Z

and σ2
V are the related variances.

3 Results

The model is evaluated in terms of calibration (calibration plot, see Figure
1 and 2) and discrimination ability (C-index, see Table 3). We also provide
the mean absolute error for the uncensored responses (MAE, see Table 3).

TABLE 3. Performance of the proposed model (Clayton-boost) on the two
datasets, contrasted to: boosting without copula (Std-boost), standard AFT
model (Std-AFT), and Cox model (Cox).

Clayton-
boost

Std-boost Std-AFT Cox

Dataset C-ind MAE C-ind MAE C-ind MAE C-ind MAE

FRICTION 0.799 0.047 0.838 0.356 0.835 1.148 - -
GBSG 0.708 749 0.685 1300 0.678 1323 0.679 875
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FRICTION data. As can be seen in Table 3 (first row) and Figure 1, the
proposed method works very well, clearly outperforming the competitors
in terms of calibration. While it struggles to correctly rank the response
(worse C-index), it performs very well in minimizing the absolute error for
the uncensored observations. Since for our specific problem this is the most
important point (we need to provide the pilot with the best approximation
of the friction in the dangerous cases in which (s)he needs to fully use it),
these results are encouraging.

FIGURE 1. Calibration plots for the FRICTION data.

GSBG cancer data. We also applied our method to a classic biomedical
example, namely the German Breast Cancer Study Group dataset analysed
by Sauerdrei et al. (1999). Here the response is the recurrence-free survival
(in days), while the covariates are clinical information on the patient. The
sample size is 686, with 56% of censored observations (299 events). The re-
sults are shown in Table 3 (second row) and Figure 1, and confirm the good
performance of our model, in this case also in terms of C-index, compared
to the competitors.
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FIGURE 2. Calibration plots for the GSBG cancer data.
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Abstract: Recent progress in the understanding of immune receptors suggests
that complex interactions between amino acids are important in determining
binding to antigens. Yet, current methods focus mostly on constructing good
predictors for the data with complex models, and less on the understanding of
the underlying interaction effects. Here, we attempt to retrieve high-order sta-
tistical interactions in immune receptor data with different methods. We study
performance at this task in a large simulation study, and how it depends on the
order, amount and strength of the interactions, witness rate and sample size. The
results show that pairwise interactions are easily retrieved, but model complex-
ity harms detection. Interactions are better detected in larger samples, but the
process is then slower.

Keywords: Main effects; Interactions; Modelling; Detection; Immune receptors.

1 Introduction

Immune receptors are a key defense of the body from pathogens, but mod-
eling them or predicting to which entity they will bind to is difficult, due
to their complex 3D structures. Indeed, an immune receptor is made of
chains of amino acids, small molecules whose combination can take multi-
ple forms in the 3D space, allowing high variability in the recognition of
antigens. Recent progress in the prediction of binding has been made with
complex machine learning techniques such as convolutional neural networks
or recurrent neural networks , and these have performed better than more
simple models. This supports the idea that high-order interactions between
amino acids are at stake.

In a dataset with p covariates, the number of possible interactions of order

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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k is
(
p
k

)
, which increases as O(pk) with the interaction order. Thus, tech-

niques explore the interaction space in a non-exhaustive way. These include
hierNet, glinternet, Monte-Carlo logic regression, logic feature selection,
Bayesian logic regression, iterative random forests and neural interaction
detection. We propose to apply these methods to the immune receptor
problem of explaining binding based on the sequence of amino acids, which
has not been done before, to study how they work in this context.

2 Material and methods

2.1 Settings

We study the binding problem, which consists in predicting px = P(Y =
1|x), where x is an amino acid sequence, typically of length 15, whose
components are categorical with 20 categories, and Y is a binary response
variable indicating whether the sequence binds to an antigen or not (Y =
1 or 0).

Statistical interactions can be defined as non-additivity of the effect of
covariates on the response. In our context, we assume that the probability of
binding px can be expressed as px = g(F (x)), with g the logit function, and
F (x) an additive function that describes the dependence on the covariates.
Then, the function F (x) shows no interaction of order k between covariates
(xij )j∈[1,k] if it can be expressed as the sum of k functions, (f\ij )j∈[1,k],
where each f\ij does not depend on xij :

F (x) =
k∑

j=1

f\ij (x1, ..., xij−1, xij+1, ..., xp).

2.2 Methods for detecting interactions

At least two lasso-based methods have been proposed in the literature to
retrieve pairwise interactions. The first one, hierNet (Bien et al., 2013),
builds on the all-pairs lasso, that includes both main effects and interac-
tions in the model. Interactions are present as a product of covariates, and
constraints are added to respect a hierarchy: interactions are included in
the model only if one or both of its variables are marginally important.
The second method, glinternet (Lim and Hastie, 2015), is based on a group
lasso. The goal is also to fit a model with main effects and interactions, but
coefficients are penalised by groups. This allows to respect the hierarchy
constraint, and at the same time speed up the search for relevant covariates.

Other methods have been proposed to retrieve higher-order interactions.
Some build on the logic regression model, that is a generalised linear model
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where covariates are Boolean combinations of the original covariates, called
logic trees. Simulated annealing is used to explore the space of trees and
find best solutions. Based on this, Kooperberg and Ruczinski (2005) use re-
versible jumpMarkov chain Monte Carlo to generate several logic regression
models from a first fit and develop Monte-Carlo logic regression (MCLR).
Another method, logic feature selection (logicFS) (Schwender and Ickstadt,
2008), creates models for different bootstrap samples of the data. A last
one, Bayesian logic regression (BLR) (Hubin et al., 2020), uses a genetic al-
gorithm to generate different trees, and a mode jumping MCMC to switch
from one model to the other. By studying which covariates appear together
in the trees, it is possible to retrieve information about interactions.

Finally, two methods fit a complex prediction model to the data, then
retrieve interactions by different metrics. Iterative random forests fits a
random forest and studies how frequently covariates appear together in
the trees (Basu et al., 2018). Neural interaction detection fits a neural
network and computes an aggregation measure of the weights telling which
interactions have the most influence on the outcome (Tsang et al., 2018).

3 Simulation study

Immune sequences are generated with the OLGA software (Sethna et al.,
2019), and only sequences of length 15 are kept. We implant interactions at
a given rate in the sequences as motifs: a group of amino acids at different
positions takes a given value, for instance amino acids at positions 1, 2, 3,
are taken to be A, A, A.
Then, we use 2 different types of model in the study. In a discriminative
model, a logistic regression is created where each binary covariates is at-
tributed a coefficient (main effects), and some products of covariates are
also included in the model (interactions), i.e.

log

(
px

1− px

)
= α

β̃0 +
∑
j∈Sm

β̃jxj +
∑
i∈SI

β̃i

∏
l∈SIi

xl +
∑
n∈Sn

β̃nxn

+ ϵ ,

α, β̃s coefficients, Sm and Sn main effects, SI interactions, ϵ ∼ N (0, 0.01).

In a generative model, we either implant interactions in the binder se-
quences, or generate many sequences and keep the ones that arrive with
the interactions in the binder class until we have enough of them. The lat-
ter procedure takes much more time so we mainly use the former one. In
both models we tune model parameters to have a few mislabelled sequences
(around 2.5% in each class). Selected methods are then applied to the final
dataset (X,Y ) to attempt to retrieve interactions.
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We vary the interaction order (from 2 to 4), implantation (witness) rate
(in 50%, 20%, 10% and 5% of sequences), number of sequences in a dataset
(103, 104, 105). In the discriminative model we also vary the strength of the
interaction with respect to the main effects (1, 2, 4 or 8), and the hierarchy
between interactions and main effects (strong, weak or no hierarchy).

4 Results

As expected, pairwise interactions are much easier to retrieve than higher-
order ones, and for higher order interactions, the methods often find sub-
interactions of order 2 instead of the correct ones. Detection is better when
more sequences are present in the dataset, but this increases detection time
and the gain is not that much. For low implantation rates the performance
decreases, but the highest implantation rate (motif in half of the sequences)
does not always lead to the best detection. For the discriminative model,
ability to separate main effects from interactions depends on coefficient
values, and is best for a high interaction coefficient. When the interaction
is not selected first, it often appears in the top 10. Interacting covariates are
also frequently retrieved as separate main effects. The hierNet and neural
interaction detection methods have shown robust performance in a wide
range of settings, for reasonable computation times, while Monte-Carlo
logic regression and BLR have performed more poorly, and despite BLR
having the largest running time. The other methods had good performance
when the interaction was easy to retrieve.

References

Basu, S., Kumbier, K., Brown, J. B., and Yu, B. (2018). Iterative random
forests to discover predictive and stable high-order interactions. Pro-
ceedings of the National Academy of Sciences, 115, 1943 – 1948.

Bien, J., Taylor, J., and Tibshirani, R. (2013). A lasso for hierarchical in-
teractions. The Annals of Statistics, 41, 1111 – 1141.

Hubin, A., Storvik, G., and Frommlet, F. (2020). A Novel Algorithmic
Approach to Bayesian Logic Regression (with Discussion). Bayesian
Analysis, 15, 263 – 333.

Kooperberg, C. and Ruczinski, I. (2005). Identifying interacting SNPs us-
ing Monte Carlo logic regression.Genetic Epidemiology, 28, 157 – 170.

Lim, M. and Hastie, T. (2015). Learning Interactions via Hierarchical
Group-Lasso Regularization. Journal of Computational and Graphi-
cal Statistics, 24, 627 – 654.

Schwender, H. and Ickstadt, K. (2008). Identification of SNP interactions
using logic regression. Biostatistics, 9, 187 – 198.

256



Minotto et al.

Sethna, Z., Elhanati, Y., Callan Jr., C. G., Walczak, A. M., and Mora, T.
(2019). OLGA: fast computation of generation probabilities of B-
and T-cell receptor amino acid sequences and motifs. Bioinformatics,
35, 2974 – 2981.

Tsang, M., Cheng, D., and Liu, Y. (2018). Detecting Statistical Interac-
tions from Neural Network Weights. In: 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada

257



Estimated Covid-19 burden in Spain: ARCH
underreported non-stationary time series

David Moriña1, Amanda Fernández-Fontelo2, Alejandra
Cabaña2, Argimiro Arratia3, Pedro Puig2

1 Universitat de Barcelona, Barcelona, Spain
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Abstract: The problem of dealing with misreported data is very common in a
wide range of contexts. The current situation caused by the Covid-19 worldwide
pandemic is a clear example, where the data provided by official sources were
not always reliable due to data collection issues and to the large proportion
of asymptomatic cases. In this work, we explore the performance of Bayesian
Synthetic Likelihood to estimate the parameters of a model capable of dealing
with misreported information and to reconstruct the most likely evolution of the
phenomenon.
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1 Introduction

The Covid-19 pandemic that is hitting the world since late 2019 has made
evident that having quality data is essential in the decision making chain,
especially in epidemiology but also in many other fields. Many methodolog-
ical efforts have been made to deal with misreported Covid-19 data, fol-
lowing ideas introduced in the literature since the late nineties. As a large
proportion of the cases run asymptomatically (Oran and Topol (2020))
and mild symptoms could have been easily confused with those of sim-
ilar diseases at the beginning of the pandemic, its reasonable to expect
that Covid-19 incidence has been notably underreported. Very recently
several approaches based on discrete time series have been proposed (see
Fernández-Fontelo et al. (2020)) although there is a lack of continuous time

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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series models capable of dealing with misreporting, a characteristic of the
Covid-19 data and typically present in infectious diseases modeling. In this
sense, a new model capable of dealing with temporal structures using a
different approach is presented by Moriña et al. (2020). A typical limita-
tion of these kinds of models is the computational effort needed in order
to properly estimate the parameters. Synthetic likelihood is a recent and
very powerful alternative for parameter estimation in a simulation based
schema when the likelihood is intractable and, conversely, the generation of
new observations given the values of the parameters is feasible. The method
was introduced in Wood (2010) and placed into a Bayesian framework in
Price et al. (2018), showing that it could be scaled to high dimensional
problems and can be adapted in an easier way than other alternatives like
approximate Bayesian computation (ABC).

2 Methods

AutoRegressive Conditional Heteroskedasticity (ARCH) models are a well-
known approach to fitting time series data where the variance error is
believed to be serially correlated. Consider an unobservable process Xt fol-
lowing an AutoRegressive (AR(1)) model with ARCH(1) errors structure,
defined by

Xt = ϕ0 + ϕ1 ·Xt−1 + Zt,

where Z2
t = α0 + α1 · Z2

t−1 + ϵt, being ϵt ∼ N(µϵ(t), σ
2). The process Xt

represents the actual Covid-19 incidence. In our setting, this process Xt

cannot be directly observed, and all we can see is a part of it, expressed as

Yt =

{
Xt with probability 1− ω
q ·Xt with probability ω,

(1)

where q is the overall intensity of misreporting (if 0 < q < 1 the observed
process Yt would be underreported while if q > 1 the observed process Yt

would be overreported) and ω can be interpreted as the overall frequency
of misreporting (proportion of misreported observations). To model con-
sistently the spread of the disease, the expectation of the innovations ϵt is
linked to a simplified version of the well-known compartimental Susceptible-
Infected-Recovered (SIR) model. At any time t ∈ R there are three kinds of
individuals: Healthy individuals susceptible to be infected (S(t)), infected
individuals who are transmitting the disease at a certain speed (I(t)) and
individuals who have suffered the disease, recovered and cannot be infected
again (R(t)). As shown by Fernández-Fontelo et al. (2020), the number of
affected individuals at time t, A(t) = I(t) +R(t) can be approximated by

A(t) =
M∗(β0, β1, β2, t)A0e

kt

M∗(β0, β1, β2, t) +A0(ekt − 1)
, (2)
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where M∗(β0, β1, β2, t) = β0 + β1 · C1(t) + β2 · C2(t), being C1(t) and
C2(t) dummy variables indicating if time t corresponds to a period where
a mandatory confinment was implemented by the government and if the
number of people with at least one dose of a Covid-19 vaccine in Spain was
over 50% respectively. At any time t the condition S(t) + I(t) +R(t) = N
is fulfilled. The expression (2) allow us to incorporate the behaviour of the
epidemics in a realistic way, defining µϵ(t) = A(t) − A(t − 1), the new
affected cases produced at time t.
The Bayesian Synthetic Likelihood (BSL) simulations are based on the
described and the chosen summary statistics are the mean, standard de-
viation and the three first coefficients of autocorrelation of the observed
process. Parameter estimation was carried out by means of the BSL (An
et al. (2019)) package for R. Taking into account the posterior distribution
of the estimated parameters, the most likely unobserved process is recon-
structed, resulting in a probability distribution at each time point. The
prior of each parameter is set to a uniform on the corresponding feasible
region of the parameter space and zero elsewhere.

3 Results

This work focuses on the weekly Covid-19 incidence registered in Spain in
the period (2020/02/23-2022/02/27). It can be seen in Figure 1 that the
registered data (turquoise) reflect only a fraction of the actual incidence
(red). The grey area corresponds to 95% probability of the posterior dis-
tribution of the weekly number of new cases (the lower and upper limits
of this area represent the percentile 2.5% and 97.5% respectively), and the
dotted red line corresponds to its median.
In the considered period, the official sources reported 11,056,797 Covid-19
cases in Spain, while the model estimates a total of 25,283,406 cases (only
43.73% of actual cases were reported). This work also revealed that while
the frequency of underreporting is extremely high for all regions (values of
ω̂ over 0.90 in all cases), the intensity of this underreporting is not uniform
across the considered regions: Aragón is the CCAA with highest under-
reporting intensity (q̂ = 0.05) while Extremadura is the region where the
estimated values are closest to the number of reported cases (q̂ = 0.50).
Detailed underreported parameter estimates for each region can be found
in Table 1. Although the main impact of the vaccination programmes can
be seen in mortality data, the results of this work also showed a signifi-
cant decrease in the weekly number of cases as well in all CCAA except
Aragón. Figure 2 represents the estimated and registered processes globally
for Spain.

Acknowledgments: Investigation funded by Fundación MAPFRE.
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FIGURE 1. Registered and estimated weekly new Covid-19 cases in each Spanish
region.
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TABLE 1. Estimated underreported frequency and intensity for each Spanish
region. CI stands for Credible Interval.

Region Parameter Estimate (95% CI)

Andalućıa
ω̂ 0.96 (0.89 - 0.98)
q̂ 0.45 (0.41 - 0.51)

Aragón
ω̂ 0.97 (0.97 - 0.98)
q̂ 0.05 (0.05 - 0.29)

Principado de Asturias
ω̂ 0.98 (0.97 - 0.99)
q̂ 0.35 (0.33 - 0.37)

Cantabria
ω̂ 0.97 (0.95 - 0.99)
q̂ 0.31 (0.28 - 0.35)

Castilla y León
ω̂ 0.98 (0.96 - 0.99)
q̂ 0.38 (0.34 - 0.40)

Castilla - La Mancha
ω̂ 0.96 (0.93 - 0.99)
q̂ 0.36 (0.30 - 0.39)

Canarias
ω̂ 0.98 (0.96 - 0.99)
q̂ 0.32 (0.29 - 0.36)

Catalunya
ω̂ 0.98 (0.96 - 0.99)
q̂ 0.35 (0.33 - 0.39)

Ceuta
ω̂ 0.97 (0.94 - 0.99)
q̂ 0.30 (0.27 - 0.35)

Extremadura
ω̂ 0.90 (0.49 - 0.97)
q̂ 0.50 (0.39 - 0.70)

Galiza
ω̂ 0.98 (0.97 - 0.99)
q̂ 0.33 (0.30 - 0.35)

Illes Balears
ω̂ 0.96 (0.88 - 0.98)
q̂ 0.39 (0.35 - 0.61)

Región de Murcia
ω̂ 0.97 (0.92 - 0.99)
q̂ 0.43 (0.38 - 0.48)

Madrid
ω̂ 0.98 (0.96 - 0.99)
q̂ 0.40 (0.36 - 0.42)

Melilla
ω̂ 0.97 (0.95 - 0.99)
q̂ 0.35 (0.32 - 0.38)

Comunidad Foral de Navarra
ω̂ 0.98 (0.97 - 0.99)
q̂ 0.31 (0.29 - 0.34)

Euskadi
ω̂ 0.98 (0.96 - 0.99)
q̂ 0.30 (0.28 - 0.35)

La Rioja
ω̂ 0.98 (0.96 - 0.99)
q̂ 0.32 (0.29 - 0.35)

Páıs Valencià
ω̂ 0.99 (0.97 - 0.99)
q̂ 0.38 (0.37 - 0.41)
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Abstract: In group sports, motion tracking spatiotemporal position data is
typically used to learn about the tactical strategies (i.e. formation, players’ role)
in a game, where all players’ movement data can be recorded via installed motion
capture sensors around a playing field. In this paper, we propose using such
motion tracking data to find each player’s most typical movement patterns for
designing personalised drills. Such personalised drills can be used as rehabilitation
programs for injured players.

Keywords: Movement Pattern; angular distribution; pattern finding, Von mises,
Football, Soccer.

1 Introduction

In recent years, the advances in sensor technologies allowed enormous data
to be collected within the sports industry. This is particularly true for
group sports (e.g. football, basketball, American football), where all play-
ers’ movement data can be recorded via installed motion capture sensors
around a playing field. To date, the primary use of such data is for tacti-
cal decision making. Player heatmaps are a popular approach. Such plots
summarise a player’s movement by highlighting regions on a pitch that the
player occupied. The aim of this paper, though, is to use motion tracking
data in a new and novel way where the emphasis could be more on players’
welfare rather than tactical decision makings. To this end, a new statistical
method was developed to identify player-specific movement patterns that
could be further used in arranging more effective and personalised training

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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sessions. Such personalised sessions will not only prepare a player for the
physiological demands in the position they play, but also make them ready
for games after an injury.
The approach taken is to fit a Bivariate Generalised Linear Model (GLM)
model based on the joint angular-linear distribution proposed by Johnson
R. A. and Wehrly T. E. (1978) to the sets of trajectories. So, in this prob-
abilistic framework, each trajectory can be summarised as parameters of
the Bivariate GLM.

2 Methodology

Suppose a trajectory T is recorded as a sequence of n (X,Y ) coordinates:

T = {(X1, Y1), ..., (Xn, Yn)} (1)

where (Xi, Yi) ∼ MVN(µ,Σ); i = 1, ..., n, Σ =
(
σ2 0
0 σ2

)
. Also it should

be noted that (Xi, Yi) is the player’s displacement at ith coordinate with
respect to the previous (i− 1)th coordinate. For the proposed method, we
transformed (Xi, Yi) into angular form:

(Xi, Yi) → (Ri,Θi) (2)

where Ri is distance to the previous coordinate and Θi is angles between
each three consecuitve coordinates. In such a condition, we know that if:

Ri =
√
X2

i + Y 2
i (3)

then
Ri ∼ Rayleigh(σ); i = 1, ..., n. (4)

Also, Θ can follow any arbitrary angular distribution. In this paper, we
assume it follows Von Mises (VM) distribution as follows:

Θi ∼ VM(θ0,K). (5)

The Von Mises distribution is a circular Normal distribution that can be
employed for statistical inference of angular random variables.
Now, to derive their joint density function, Johnson R. A. and Wehrly T.
E. (1978) proposed an angular-linear distribution as follows:

fR,Θ(r, θ) = 2πg(ζ)fR(r)fΘ(θ); −π ≤ θ ≤ π ; −∞ ≤ R ≤ ∞ (6)

where g(.) is an angular disribution function of variable ζ, given by:

ζ = 2π(FR(r)− FΘ(θ))− π. (7)
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In the proposed approach in this paper, we used the joint density function as
a foundation for constructing the bivariate GLM. In this framework, the two
tan(.) and log(.) functions have been employed for θ and R, respectively.
So, for each trajectory, the location parameter of the VM distribution and
scale parameter of Rayleigh disribution can be modeled as follow:

θ0 = 2atan(β0 + β1time) (8)

σ = exp(γ0 + γ1time) (9)

After plugging the above linear predictor in the likelihood function, we can
estimate the parameters by Maximum Likelihood approach through the
joint density function as follows:

(β̂0, β̂1, γ̂0, γ̂1) = argmax(L(β0, β1, γ0j , γ1)) (10)

where

L(β0, β1, γ0, γ1) =
n∏

i=1

fΘ,R(θi, ri|σ, θ0). (11)

In modern football (soccer) games, data are collected on a player’s move-
ment 25 times every second over 90 minutes match. Such a long trajectory,
for analysing, is required to be broken down into segments representing
movement transitions. After estimating the model parameters for each seg-
ment, we employed a hierarchical k-means clustering to cluster those seg-
ments with similar parameters into the same movement pattern.

3 Results

The segmentation process has been done with respect to the velocity, and
those segments with the highest value in velocity (sprinting) are considered
to be applied to the proposed model. To prevent any bias in the parameters
estimation, all trajectories are rotated to have the same origin points, and
the ending points are aligned with the origin points. The Figure 1 repre-
sents all the rotated spriniting segments for a given football player. Then,
the proposed model in (6) were applied to estimate the model parame-
ter. Then, the hierarchical k-means clustering was applied to the estimated
parameters. Figure 2 shows the result of the hierarchical k-means cluster-
ing approach. Each parameter represents different interpretation for each
segment. For instance, as can be seen in Figure 2 (4) negative γ̂1 can be
considered as a movement which is decreasing in speed.
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FIGURE 1. All sprinting trajectories with the same origin point

FIGURE 2. Clustered trajectory

4 Conclusion

In this paper, a bivariate GLM was proposed to discover similar movement
patterns of a particular player in a football game. The proposed model has
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shown it has the capability to differentiate between movements not only in
terms of their shape but also in terms of the intensity of the movement.
This would be a great advantage to sport scientists and physician to design
more effective training sessions and rehab programmes for players who
suffer from injury. We are also interested in utilising a sequence pattern-
finding approach to uncover the most repeated pattern.
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Abstract: We propose a variable selection method that is based on a smooth
information criterion. Our differentiable problem can be optimized directly with
automatic tuning parameter selection and is implemented in a flexible distribu-
tional regression setting, where covariates can enter the model through multiple
distributional parameters, such as the mean and variance, simultaneously. We
apply the method to prostate cancer data using the smoothic package in R.
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1 Introduction

Variable selection involves identifying and selecting a subset of relevant and
important variables to utilize in model construction. Popular methods, in-
cluding the LASSO (least absolute shrinkage and selection operator) (Tib-
shirani, 1996), include a penalty term consisting of the non-differentiable
L1 norm. These procedures have been studied mostly in the areas of normal
linear regression and generalized linear models. Covariates enter these clas-
sical models through a single location parameter. We expand these meth-
ods to include multiple distributional parameters for implementation in
more flexible scenarios, such as, when the process under study displays
heteroscedastic behaviour.
The level of penalization is controlled by a tuning parameter, which is
typically obtained in a computationally expensive manner where an array
of different models are fitted to the data (one for each value of the tuning
parameter). A “best model” is then selected based on, for example, the

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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cross-validation error or an information criterion (IC), such as the Bayesian
IC (BIC). Our proposed approach is in line with the latter, except that we
directly optimize the IC in a way that the tuning parameter is fixed from
the start, so that an array of models do not need to be fitted. Furthermore,
our approach is much more straightforward to implement than existing
procedures due to its smooth (differentiable) penalty that permits the use
of standard Newton Raphson optimization.
We refer to this as the “smooth IC” (SIC) procedure and extend its use to
the emerging area of “distributional regression” (Stasinopoulos et al, 2018),
which is also referred to as “multiparameter regression” (MPR) (Burke et
al, 2020). This is a more flexible approach where multiple distributional pa-
rameters, such as the location and dispersion parameters, are regressed on
covariates at the same time. In this MPR setting, the standard penalized
regression approaches would become even more computationally intensive
since there will be a separate tuning parameter for each distributional pa-
rameter, e.g., one for the mean and one for the variance. However, our
proposed SIC variable selection procedure is ideally suited to this setting
since the tuning parameter is known and fixed from the start.

2 Smooth Information Criterion

We focus on the normal model, although the methodology can easily be
used with other models. The log-likelihood function for the MPR normal
model is

ℓ(θ) = −n

2
log(2π)− 1

2

n∑
i=1

xT
i α− 1

2

n∑
i=1

e−xT
i α(yi − xi

Tβ)2, (1)

where yi is the response value and xi = (1, x1i, . . . , xpi)
T is a vector of

covariates for the ith individual over the predictor variables j = 0, 1, . . . , p.
The vectors of regression coefficients for the location and dispersion pa-
rameters are β = (β0, β1, . . . , βp)

T and, α = (α0, α1, . . . , αp)
T respectively.

Arranging the model selection information criteria as a penalized likelihood
(Su et al, 2018) and introducing a smooth approximation to the L0 norm
yields our proposed approach of MPR with smooth IC (MPR-SIC):

ℓSICλ (θ) = ℓ(θ)− λ

2

[
||β̃||0,ϵ + ||α̃||0,ϵ

]
, (2)

where θ = (β, α)T , λ = 2 or λ = log(n) in the AIC and BIC respectively,
β̃ = (β1, . . . , βp)

T and α̃ = (α1, . . . , αp)
T , i.e., the intercepts are not pe-

nalized. The “smooth L0 norm” is defined as ||θ||0,ϵ =
∑p

j=1 ϕϵ(θj), where

ϕϵ(x) = x2/(x2 + ϵ2). This is differentiable for ϵ > 0 and limϵ→0 ϕϵ(x) =
||x||0. Smaller values of the smoothing parameter, ϵ, approximate the L0

norm closely and encourage sparsity, but this also makes the method be-
come less numerically stable.
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FIGURE 1. Shape of objective function for different values of ϵ.

We recommend “telescoping” through a decreasing sequence of ϵ values to
achieve sparsity by squeezing the coefficient values to zero. The estimates
from the previous problem are used as initial values for the current nearby
optimization problem, therefore making use of “warm starts”. This proce-
dure can attain final estimates that are arbitrarily close to zero, and can
therefore be treated as zero for practical purposes. The effect of telescoping
in relation to the objective function is shown in Figure 1. Different ϵ values
in the telescope sequence are shown by different curves. For the true zero
coefficient, β1, the width of the curves become narrower as ϵ decreases, and
it is clear that the minimum is concentrated at zero (true values indicated
by dashed vertical lines). This shows that there is less uncertainty around
the estimate. Moreover, the shape of the objective function for the true
non-zero coefficient, β2, is not impacted by the telescoping method.

3 Analysis of Prostate Cancer Data

We apply our method using the smoothic package in R (O’Neill and Burke,
2021) to the prostate cancer data. The data come from a study by Stamey
et al (1989) and appear in Tibshirani (1996). The estimates and associated
standard errors (in brackets) are shown in Table 1. A measure of the effect
of the variable is indicated by the ∆BIC value, which is the change in
BIC observed after removing the variable from the location or dispersion
component of the model. The variable svi is selected in both components.
Interestingly, the removal of svi from the dispersion parameter results in
an increase in the BIC of 4.09 units, which is more than the increase in the
BIC of dropping the variable from the location parameter (1.64 units).
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TABLE 1. Estimation metrics for the prostate cancer data.

β̂j ∆BIC α̂j ∆BIC

inter -1.26 (0.53) 3.15 (1.36)
lcavol 0.47 (0.06) 40.39
lweight 0.82 (0.14) 19.79 -1.17 (0.38) 4.78
svi 0.58 (0.22) 1.64 1.07 (0.38) 4.09

Variables not selected: age, lbph, lcp, gleason, pgg45.

4 Discussion

Our proposed smooth IC distributional regression procedure performs vari-
able selection and parameter estimation simultaneously. Standard gradient
based optimization techniques can be used in combination with the tele-
scoping method to produce sparse estimates. Fixing the tuning parameter
at log(n) for the BIC is computationally advantageous, as it avoids the
need to fit an array of different models with different tuning parameters.
The effectiveness of our method and the advantage of modelling the disper-
sion are evident from the results of the prostate cancer data, where some
dispersion effects have more of an impact on the BIC than location effects.

Acknowledgments: This work was supported by the Confirm Research
Centre and Science Foundation Ireland (grant number: 16/RC/3918).
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Abstract: Spatial aggregation of prevalence based on point-referenced obser-
vations is used to provide areal predictions at a desired resolution. When ob-
servations arise from a population, we argue that spatial aggregation requires a
sampling frame model that incorporates uncertainty about the population in or-
der to account for three major sources of aggregation error : aggregation weights,
fine scale variation, and finite population variation. We show via simulation study
that, by addressing aggregation error in areal estimates, our proposed sampling
frame model is more robust to aggregation grid resolution than common meth-
ods. We demonstrate the practical importance of the proposed model with an
application to neonatal mortality using the 2014 Kenya demographic and health
survey with binary individual outcomes.

Keywords: Aggregation Models; Bayesian Inference; Demographic Health Sur-
veys; Neonatal Mortality; Small Area Estimation.

1 Introduction

Spatial aggregation based on point-referenced observations is an important
problem in spatial statistics. If the quantities of interest can be written as
integrals of a spatial field, the desired posterior distributions can be com-
puted by block kriging or may be directly available in basis decomposition
methods. However, in some cases, point-referenced measurements may rep-
resent responses from a ‘target’ population, a population of interest. In
these cases, one might desire aggregate estimates for the target popula-
tion from which the responses were gathered. We term this problem spatial
aggregation with respect to a population distribution.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Common geostatistical approach to spatial aggregation with respect
to a population distribution (in black), with proposed additions (in dashed blue).
While population data is sometimes used aggregating from point to areal level in
common approaches, this procedure is ad hoc and does not account for several
sources of aggregation error.

Our focus is small area estimation of prevalence, i.e. the proportion of
individuals with outcome 1, based on binary responses (0 or 1), although
common approaches instead approximate the prevalence by the risk, which
is the expected number of individuals with outcome 1. It is worth empha-
sizing that even if we knew the risk in an area exactly, say r = 0.7, the
prevalence p could vary widely around this number for a small population
size just as a binomial proportion might vary around its probability.

In this context we identify three major sources of aggregation error :
1) aggregation weights, 2) fine scale variation, and 3) finite population vari-
ation. By aggregation weights we mean the weights used to take a weighted
integral or average of point level estimates to produce areal estimates. These
weights may involve population density, for example, or the proportion of
population in the urban or rural part of an area. Fine scale variation is
variability occurring at the finest modeled spatial scale, such as the scale
of the response. Fine scale variability could be induced by unmodeled non-
spatial or discrete spatial covariates, for example, or other local conditions.
Finite population variation is variability caused by the finite size of the
target population, and is the cause of variation in prevalence about the

275



Paige et al.

underlying risk.
To address the three major sources of aggregation error we identify,

we propose two additions to the common geostatistical workflow depicted
in Figure 1. First, we propose accounting for information about the pop-
ulation including population density and census information. Second, and
most importantly, we propose using a sampling frame model that expresses
uncertainty about the population distribution, and depends on the added
population density and sampling frame information. The “sampling frame”
is the full list of the individuals and auxiliary information such as spatial
locations and covariate values in the target population.

2 Data and methods

We estimate the neonatal mortality rate (NMR), prevalence of mortality
among children within 28 days of birth using the 2014 Kenya Demographic
and Health Surveys (KDHS) survey (Kenya National Bureau of Statistics,
2015). The survey selects 1,582 of the 96,215 enumeration areas (EAs),
which are villages or city neighborhoods that compose the sampling frame,
and whose exact locations are unknown. 25 households sampled within each
selected EA form the survey ‘clusters’. We focus on NMR in 2010–2014
in the 301 constituencies in Kenya that sub-partition Kenya’s 47 counties.
Population density estimates from WorldPop (Tatem, 2017) are normalized
to match the urban/rural population census totals as in Paige et al. (2020).

If the locations of each EA with index i were known along with the
number of members of the target population that were born, Ni, and died
Zi in the time period, the prevalence in region R could be calculated as:

p(R) =
M∑
i=1

Ni

N

Zi

Ni
, (1)

where M is the number of EAs in R, and N =
∑M

i=1 Ni.
One geostatistical model for prevalence at the n clusters is:

yc|rc, nc ∼ Binomial(nc, rc)

logit(rc)|β, sc, ϵc = d(sc)
Tβ + u(sc) + ϵc, c = 1, . . . , n. (2)

Here, yc is and nc is the number of neonatals that died and were born in
the time period in cluster c respectively. The cluster level risk is rc, and
the cluster location is sc. The vector d(sc) contains spatial covariates, and
ϵc ∼ N(0, σ2

ϵ ) is the spatial nugget. The spatial effect u = {u(s) : s ∈ R2}
is a mean zero stationary Gaussian process.

We will assume d(s) = β0+βURBI(s ∈ urban), where I(s ∈ urban) is
1 and 0 if s is urban or rural respectively. We model u via the stochastic
partial differential equation (SPDE) approach (Lindgren et al., 2011) using
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TABLE 1. 95% credible interval (CI) widths in neonatals per thousand, and
empirical coverages in percent of gridded and empirical aggregation models as a
function of numerical aggregation grid resolution.

95% CI Model Units 200m 1km 5km 25km
Width Empirical (per 1,000) 9.4 9.4 9.5 9.5

Gridded 8.1 18.8 56.3 59.7

Coverage Empirical (Percent) 94 94 94 94
Gridded 90 100 100 100

integrated nested Laplace approximations (Rue et al., 2009) to circumvent
the computational expense of Markov chain Monte Carlo.

Estimates for p(R) are commonly obtained by numerically inte-
grating the risk in (2) over a spatial grid indexed by g ∈ G, weight-
ing by population density q normalized to have unit integral on R as,
rgrid(R) =

∑
g∈G q(sg)rg, where rg = d(sg)

Tβ+u(sg)+ ϵg is the risk of an
EA at grid cell g. We call this the ‘gridded’ sampling frame model. Instead,
we propose an ‘empirical’ sampling frame model using Kenya’s 2009 cen-
sus data and population density information to estimate a distribution for
Ni and the EA locations, and to simulate a distribution of possible finite
populations. The risk at EA i is then r(si)|β, si, ϵi = d(si)

Tβ + u(si) + ϵi
where si is the location of the EA. Conditional on the finite population
and risk, Zi is binomial with risk r(si) and with Ni trials.

By assuming there is exactly one nugget effect per grid point, the
gridded model does not correctly account for fine scale variation that could
be caused by unmodeled nonspatial or discrete spatial covariates and EA-
specific conditions. It also assumes prevalence can be exchanged with risk,
and so does not account for finite population variability. Although it ac-
counts for aggregation weights using population density, some other com-
mon models do not. The empirical model better accounts for fine scale and
finite population variability by eliminating these assumptions.

3 Results and discussion

We apply both aggregation models to 100 KDHS-like surveys from 100
populations in Nairobi County simulated using (2) linked with the em-
pirical aggregation model. Populations are simulated on a 5km resolution
aggregation grid, while models are fit at various grid resolutions. Mean
95% credible interval (CI) widths and coverages for the 17 constituencies
in Nairobi are shown in Table 1. While the gridded model is highly depen-
dent on grid resolution, never achieving nominal coverage with CI widths
varying from 8.1 to 59.7 neonatals per thousand, the empirical aggregation
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FIGURE 2. NMR estimates in neonatals per thousand (left) and CVs (right) for
Kenya constituencies in 2010–2014. Black dots are 2014 KDHS cluster locations.

model is robust to resolution, achieving essentially nominal coverage and
similar CI widths in all cases.

We give NMR predictions in neonatals per thousand and coefficients
of variation (CV) for the empirical aggregation model applied to the 2014
KDHS in Figure 2. We find central predictions are primarily influenced by
the spatial effect and aggregation weights (the urban effect is not statisti-
cally significant), while CVs are mainly influenced by fine scale and finite
population variation, and EAs and clusters per constituency.

4 Conclusions

We highlight three sources of aggregation error when estimating population
prevalence: aggregation weights, fine scale variation, and finite population
variation. We propose adding additional steps to the common workflow
for estimating population prevalence with geostatistical models. In partic-
ular, we propose addressing aggregation error by adding to the workflow
a sampling frame model based on population density and census data. We
show via simulation study that the resulting predictions and associated
uncertainties are more robust to the aggregation grid.
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Abstract: A rich class of general Bayesian mixture models is introduced for
real-valued time series. The mixture models are defined in terms of partitions of
the state space, with a different time series model associated to each region of the
partition. The state space partitions are defined in terms of a discretized version
of the most recent samples and are represented by context-tree models. Together
with the general Bayesian modelling framework, a collection of methodological
and algorithmic tools are also developed, allowing for exact and computationally
efficient Bayesian inference. In particular, it is shown that the maximum a pos-
teriori probability (MAP) mixture model can be identified exactly, including the
MAP context-tree partition and the MAP time series model fitted to each region.
The proposed framework can be used with an arbitrary class of time series models
associated to the different state-space regions. Special attention is given to the
case of context-tree mixtures of autoregressive (AR) models. The performance of
the proposed methods in model selection and forecasting is illustrated through
a real-world applications from economics, where they are found to outperform
several commonly used approaches.

Keywords: Time series; Bayesian mixture models, State space partitions, Au-
toregressive models; Context trees.

Extended abstract

Time series modelling. The statistical analysis of time series is an im-
portant task with applications across the entire spectrum of applied sci-
ence and engineering. A wide variety of modelling approaches have been
proposed, including autoregressive (AR) models, hidden Markov models,
state-space models, deep neural networks and Gaussian processes. How-
ever, there still remains the need for rich classes of flexible models that
are easily interpretable and suitable for applications with limited training
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data. In this work, we introduce such a general class of Bayesian mixture
models for real-valued time series.
The key element of the proposed approach is that the state space is parti-
tioned based on discretized values of the most recent samples, with a differ-
ent time series model associated to each region of the partition. We refer to
this discretized version of the most recent samples as the discrete context,
which is extracted from the real-valued observations using a finite-valued
quantizer. These state space partitions are represented by discrete context-
tree models, which are typically simple and easily interpretable, while at the
same time capturing important aspects of the underlying structure present
in the data.
Context-tree models were initially introduced in the information-theoretic
literature in the 1980’s, and have been used widely in data compression
since then. Recently, they were studied from a Bayesian statistics point of
view by Kontoyiannis et al. (2020), who introduced the Bayesian Context
Trees (BCT) framework. Extending the ideas and algorithms of the BCT
framework, we show that exact Bayesian inference is possible in a compu-
tationally very efficient manner for the class of mixture models proposed
in this work. In particular, the maximum a posteriori probability (MAP)
mixture model can be identified exactly, including the MAP context-tree
partition and the MAP time series model in each region.
Although the general modelling framework can be used with an arbitrary
class of time series models associated to each state-space region, the focus of
this paper is when AR models are used. This results in a class of flexible AR
mixtures that generalizes popular AR mixtures, including the Threshold
Autoregressive (TAR) models (Tong and Lim, 1980) and the Mixture Au-
toregressive (MAR) models (Wond and Li, 2001). The performance of the
proposed methods in model selection and forecasting is illustrated through
an applications on real-world data from economics, where they are found
to outperform several state-of-the-art approaches.

Bayesian mixture models. The discrete context that will be used to de-
fine the state space partitions is extracted from the real-valued observations
via a piecewise constant quantizer Q : R → A. Here A = {0, . . . ,m− 1},
and we assume that the m quantization levels are defined via the thresholds
{c1, . . . , cm−1}.

State space partitions. Given a quantizer Q a maximum context length
D ≥ 0, and a context tree T , we define a partition of the state space RD via
T as follows. For a time series x = {xn}, let t = (Q(xn−1), . . . , Q(xn−D)) be
the discrete context of length D corresponding to the sample xn at time n,
and let s be the unique leaf of T that is a suffix of t. For example, for the
context tree of Figure 1, if Q(xn−1) = 0 and Q(xn−2) = 1 then s = 01,
whereas if Q(xn−1) = Q(xn−2) = 1 then s = 1.
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This defines a partition of R2 into three regions indexed by the contexts
{1, 01, 00} corresponding to the leaves of T .

0

1

θ1

θ01

θ00

FIGURE 1. Example of a binary context tree T representing the partition.

To complete the specification of the hierarchical model, we associate a
different model to each leaf s of the context tree T , giving a different
conditional density for xn: At time n, given the context s determined by
the past D samples (xn−1, . . . , xn−D), the distribution of xn is given by the
model assigned to leaf s. Although arbitrary time series models could be
used in general, here we associate AR models with parameters θs to each
leaf s, and refer to the resulting model class as the Bayesian context tree
autoregressive model (BCT-AR).

Prior structure. At the top level, we consider state space partitions
represented by context trees T in the collection T (D) of all proper m-ary
trees with depth no greater than D, where a tree T is called proper if any
node in T that is not a leaf has exactly m children. Following Kontoyiannis
et al. (2020), for the trees T ∈ T (D) we use the BCT prior,

π(T ) = πD(T ;β) = α|T |−1β|T |−LD(T ) ,

where β ∈ (0, 1) is a hyperparameter, α = (1−β)1/(m−1), |T | is the number
of leaves of T , and LD(T ) is the number of leaves of T at depth D. This
prior penalizes larger trees by an exponential amount.
Given a tree T ∈ T (D), we place an independent prior on each θs, so that
π(θ|T ) =

∏
s∈T π(θs). For the parameters θs, we use a Gaussian prior for

the AR coefficients and an inverse-gamma prior for the noise variance.

Exact Bayesian inference. The proposed prior structure allows for ex-
act Bayesian inference, in a computationally very efficient manner, by using
modified versions of the algorithms of Kontoyiannis et al. (2020). In par-
ticular, for a time series x, the prior predictive likelihood p(x) can be com-
puted exactly, with all tree models T and parameter vectors θ integrated
out. Also, the MAP BCT-AR model can be identified exactly, including
the MAP context-tree partition and the MAP AR parameters within each
region.
Next, we give an example application of these methods to a real-world data
set.

US unemployment rate. The first example we consider is the quarterly
US unemployment rate, in the time period 1948-2019 (288 observations).
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The fitted MAP BCT-AR model is the tree of Figure 1, identifying three
meaningful states: Jumps higher than a threshold (c = 0.15) correspond
to economic contractions (context 1), context 00 corresponds to a stable
economy, and context 01 corresponds to stabilizing just after a contraction.
In Table 1, the performance of our methods in forecasting is compared with
the most successful earlier approaches (Montgomery et al., 1998).

TABLE 1. Mean squared error of forecasts (with a 50-50 training/test set split)

Prediction step

Model 1 2 3 4 5

Seasonal ARIMA 5.40 7.71 10.1 11.6 11.0
SETAR 5.42 8.34 8.82 9.48 9.95
MAR 5.33 7.61 8.92 9.56 9.71
BCT-AR 4.90 7.33 8.44 9.08 9.48
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Abstract: Integrated step selection analysis is a popular statistical tool to study
animal’s movement and habitat selection using conditional logistic regression. In
this paper, we extend this framework by introducing an underlying latent Markov
chain which allows preferences and movement patterns to vary over time. A sim-
ulation study is used to investigate the performance of the resulting Markov-
switching integrated step selection analysis and to compare it to alternative can-
didate models. Besides habitat selection, the inherent regression model is also
applicable for longitudinal discrete choice and case-control studies.
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1 Introduction

A central interest in ecology lies on animals’ habitat and resource use. Com-
bining animal movement and environmental data, integrated step selection
analysis (iSSA) is a popular framework for studying fine-scale habitat se-
lection of the animal moving through the landscape, while also considering
movement capacities (Avgar et al., 2016). It relies on a conditional logistic
regression (CLR) to compare the characteristics of used locations where the
animal was observed, against alternative locations available at a given time
point (see Figure 1). However, preferences and movement patterns might
depend on the animals’ usually unobserved behavioural modes such as rest-
ing or foraging. Ignoring such states in the analysis might lead to biased re-
sults and misleading conclusions. Therefore, it has recently been suggested
to first apply hidden Markov models (HMMs) to the movement data for
latent state decoding, before fitting state-specific iSSAs (HMM-iSSAs) in a
second step (Karelus et al., 2020). This two-step approach accounts for the
latent state structure, but it ignores uncertainties in the state classification

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Left panel: Illustration of a movement trajectory with used locations
in black and alternative available locations for time point t+1 in colour. Middle
and right panel: Example landscape and example spatial density from the simu-
lation study (state 2.)

and might confound movement and selection patterns. Similar to Nicosia
et al. (2017), in this paper, we therefore propose a Markov-switching iSSA
(MS-iSSA) which allows for a simultaneous estimation of the state, selec-
tion and movement parameters. A simulation study is used to compare the
performance of the MS-iSSA to alternative models.

2 Methodology

Let {x0,t}Tt=1 denote the time series of observed locations of length T , with
x0,t ∈ R2. We assume the movement to be driven by an underlying N -state
discrete-time Markov chain {St}Tt=1, defined by the transition probability
matrix Γ = (γij) with γij = Pr(St = j | St−1 = i). Conditional on the
current state St = i, and locations x0,t−1 and x0,t, the spatial density for
the next location x0,t+1 can be modelled as:

fi(x;θ
(i),β(i)) =

selection-free
movement kernel︷ ︸︸ ︷

ϕ(x | x0,t,x0,t−1;θ
(i)) ·

movement-free
selection function︷ ︸︸ ︷
exp(Z(x)

⊤
β(i))∫

x̃∈Dx

ϕ(x̃ | x0,t,x0,t−1;θ
(i)) · exp(Z(x̃)⊤β(i))dx̃︸ ︷︷ ︸

normalising constant

,

where Z(x) denotes the location-specific covariate vector (including, e.g.,
land-cover type, snow depth), and Dx the availability domain. Φ(·) de-
scribes the space use density in absence of any habitat selection. We con-
sider a gamma distribution for step length (i.e. moved distance) lt =

∥x − x0,t∥ with state-dependent parameters θ
(i)
1 and θ

(i)
2 for shape and

rate, respectively, and a uniform distribution for turning angle (i.e. direc-
tional change) αt ∼ U[−π,π), but other choices are possible. The movement
kernel is weighted by a log-linear function involving the state-dependent
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selection coefficient vector β(i) which indicates preference for or avoidance
of habitat characteristics.
The integral in the denominator is usually intractable. However, justified
by the law of large numbers, parameter estimation can rely on CLR using
J control locations xj,t+1 randomly drawn from Dx (Nicosia et al., 2017).
This leads to the state-specific choice probability:

p0ti =
exp

[
log(l0,t)(θ

(i)
1 − 1)− l0,tθ

(i)
2 + Z(x0,t+1)

⊤β(i)
]

∑J
j=0 exp

[
log(lj,t)(θ

(i)
1 − 1)− l0,tθ

(i)
2 + Z(xj,t+1)⊤β

(i)
]

Plugging p0ti, i = 1, . . . , N , into the HMM likelihood (Zucchini et al.,
2016), parameters can be estimated using numerical maximisation of the
likelihood, which is evaluated using the forward algorithm.

3 Simulation Study

We use a simulation study to evaluate the performance of the proposed
method and compare it to the two-step approach (HMM-iSSA) and basic
iSSAs. In each of the 100 simulation runs, we generated a covariate as a
synthetic landscape Z based on Gaussian random fields. Then T = 1000
locations were simulated based on an MS-iSSA model with N = 2 states,
transition probabilities γ11 = γ22 = 0.9, gamma distribution parameters
θ(1) = (1.2, 1.25) in state 1, and θ(2) = (2.25, 0.29) in state 2. State 2 was
associated to selection for the landscape feature using β(2) = 2 (see Figure
1). For state 1, we considered two scenarios: (1) β(1) = 0, i.e. no selection,
(2) β(1) = −2, i.e. avoidance of the landscape feature.
Figure 2 shows the estimates of the MS-iSSA, HMM-iSSA and iSSA fitted
to the simulated data in each simulation run using J = 20, 100 and 500
randomly drawn control locations. The results indicate that for the HMM-
iSSA and iSSA, the selection coefficients are biased. The MS-iSSA estimates
are reasonable, especially for J = 500, although the variance of β̂(2) is
rather large in both scenarios. In additional simulations with T = 5000,
the estimation performance further improves.

4 Discussion

The simulation study suggests that the MS-iSSA is a promising tool for
analysing habitat selection and movement in R2 while considering state-
switching dynamics over time. Current work focuses on refining the sam-
pling procedure for the control locations, model selection, and a case study
using telemetry data from hares. While the presented MS-iSSA method
is designed for habitat and movement analyses, the inherent Markov-
switching CLR is applicable also in other areas, e.g. for longitudinal discrete
choice studies in transportation or case-control-studies in medicine.
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FIGURE 2. Boxplots of the parameter estimates across the 100 simulation runs
for each fitted model, respectively. The upper row displays the selection coeffi-
cients, the middle row the shape parameters and the bottom row the rate param-
eters. The three boxplots per parameter and model indicate the use of J = 20
(left), 100 (middle), and 500 (right), respectively. True parameter values are in-
dicated by the green (state 1) and yellow (state 2) lines.
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Abstract: Joint models for longitudinal and time-to-event data have seen a lot
of extension over the recent years, spatial joint models, however, are still rare.
By substituting the commonly used proportional hazards model by a piecewise
additive mixed model we allow for more flexibility with respect to the baseline
hazard and the form of the predictors included in the model. The results of a
simulation study support this approach.
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1 Introduction

Biometrical studies often capture time-to-event and longitudinal data si-
multaneously. Since separate analysis of these outcomes leads to biased
estimates, both should be modelled jointly. These joint models consist of
two submodels: A longitudinal submodel and a survival submodel with both
being linked through an association parameter. The former is traditionally
a linear mixed model and the latter a proportional hazards model. This
model type has seen a lot of expansions in recent years covering different
estimation approaches (for a comparison see Rappl et al., 2020), model vari-
ations and types of submodels. Alsefri et al. (2020) give a concise summary
of advances in Bayesian joint models in particular.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
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Still joint models with a spatial component are rare, e.g. Martins et al.
(2016) have described their Bayesian estimation with a Weibull baseline
hazard and Köhler et al. (2017) a Bayesian flexible tensor-product ap-
proach using Newton-Raphson procedures and derivative-based Metropolis-
Hastings sampling. However, assuming a parametric baseline hazard can
be quite restrictive and derivative-based Metropolis-Hastings algorithms
are computationally expensive. Therefore, we propose a similarly flexible
and faster Bayesian approach to joint modelling by choosing a piecewise
additive mixed model (PAMM, Bender et al., 2018) in the time-to-event
submodel instead. This allows for spatial, (non-)linear and random effects
to be included as well as estimation of the baseline hazard without any
assumptions about its distributional form.
More theoretical background of this approach can be found in Section 2,
while Section 3 highlights the results of a simulation study followed by a
short discussion of our findings in Section 4.

2 Methodological background

Let y denote the vector of longitudinal outcomes across all individuals i =
{1, . . . , n} and observations times points t = {1, . . . , ni} and λ(t) the vector
of individual specific risks to experience an event at time t proportional to
the baseline hazard λ0(t) and based on the observed event times T and
censoring/event indicator δ. Then in its most generic form a joint model
looks like

y(t) = ηl(t) + ηls(t) + ε, ε ∼ N(0, σ2I) (1)

λ(t) = λ0(t) exp{ηs + γα · ηls(t)}, (2)

where ηs and ηl are survival and respectively longitudinal submodel specific
predictors and ηls is the predictor that connects both model parts through
the association parameter γα.
Now (2) can be re-written as a log-linear Poisson-model of counting events
δj in interval j by dividing the observation time (0, tmax] into J inter-
vals with boundaries 0 = κ0 < · · · < κJ = tmax and assuming constant
baseline hazards λj within each interval (piece-wise exponential model). If
the interval-specific log-baseline hazard log λj is further represented as a
smooth function of time f0(tj) instead of a step-function the model gener-
alises to a PAMM. Together with the exposure times oj = (o1j , . . . , onj)

′

of each individual i in each interval j as offsets we can equivalently write
(2) as

λ(t) = exp {f0(tj) + oj + ηs + αηls} , ∀ t ∈ (κj−1, κj ]. (3)

The predictors η· are generically specified such that they may include any
function f · = fk(zk) of any covariate vector zk∀ k = 1, . . . ,K, where f ·
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may denote linear (f lin), smooth (fsm), spatial (fgeo) and random (frdm)
effects of their respective covariates. The only restrictions here are that the
random effects frdm are part of the shared predictor ηls and there must be
only one spatial effect fgeo in the model for identifiability reasons. Hence
a specific predictor can be expressed as

η· = f lin + fsm + fgeo + frdm = η· = Z1,·γ1,· + . . .ZK,·γK,·, (4)

where the second part corresponds to the matrix notation of an effect as
effect specific design matrix Zk,· and corresponding coefficients γk,·.
The prior structure for all parameters in the model then is straightforward
- note that the baseline hazard f0(tj) and the association parameter γα are
no different from any other effect in the predictors - and given by

p
(
γk | σ2

γk

)
∝ σ−rk(Kk)

γk
exp

{
− 1

2σ2
γk

γ′
kKkγk

}
,

σ2
γk

∼ IG(a, b), σ2
ε ∼ IG(a0, b0)

with the data likelihoods as follow

y ∼ N(ηl(t) + ηls(t), σ
2
εI),

δj ∼ Poi(logλ(t)) ∀ t ∈ (κj−1, κj ].

3 Simulation study

In order to assess the performance of our approach we examined R = 100
replications of estimates from simulated data of n = 200 individuals across
originally ni = 6 observation times points from model (1) with γα = −0.3
and the predictors

ηl = −0.5 xl(t), ηs = 0.1 xs and

ηls = 0.9 xls,1 − 0.5 sin(xls,2)− 0.5 xls,3 + fgeo(s) + 0.4 t+ b0 + b1 t.

The model variance was set to σ2 = 0.5 and the variance-covariance of the
random effects to B =

(
2 0
0 2

)
.

Coverage of the true effects within the 95%-high density region and mean
squared error (MSE) were used to evaluate the performance of the above
model and the results can be found in Table 1. The results in the table
indicate low MSE for the estimation of all effects and that coverage of 95%
is met. The spatial effect is covered in 96 out of 100 replications with an
MSE of 0.057. Estimated with the largest error are the random effects,
yet the estimations still cover the true values in 95.3% and 94.3% of the
cases respectively. Illustrations of the effect estimates of the geographical
covariate as well as the random effects against the true values can be found
in Figure 1. Given the amount and type of the effects in this model as well
as the rather small sample size of n = 200 individuals the results already
indicate the solid performance of this approach.
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TABLE 1. Mean squared error and coverage of 100 replications by effect

MSE HDI95 (in %)

longitudinal

intercept 0.017 91.0

xl 0.001 93.0

shared

time 0.026 96.0

xls,1 0.014 91.0

xls,3(t) 0.004 88.0

f(xls,2) 0.039 95.4

fgeo 0.057 96.0

b0 0.315 95.3

b1 1.223 94.3

survival

γα 0.004 96.0

xs 0.011 95.0

f0(t) 0.039 96.6

Estimated effect

−0.2049 0.2410

True effect

−0.7557 0.94290
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FIGURE 1. Illustration of estimates of spatial effects and random intercepts and
slopes against their true values.
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4 Summary and Discussion

Despite the advances joint models have seen over the recent years spatial
joint models are still rare, which could be due to the restrictions based on
the baseline hazard for estimation. By using a piecewise additive mixed
model for the survival submodel we suggest a more flexible approach to
not just estimate the baseline hazard but theoretically include any type of
effect in the predictors of the model.
The results of a first simulation study are very promising and we are al-
ready in the process of substantiating these findings with more elaborate
simulated models and real data examples. Those more elaborate models
could compare the predictor specific performance of spatial covariates,
time-varying effects and different shapes of baseline hazards.
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Abstract: Systolic and diastolic blood pressures have always been closely as-
sociated with environmental factors such as temperature and relative humidity.
However, the interaction effect between these environmental factors in modelling
blood pressure is often not considered. We aim to use generalized additive models
to model blood pressures as the environmental data often display a non-linear
pattern. The explanatory variables may often have different measuring units. The
tensor product spline approach is practical to model the interaction effect among
the environmental explanatory variables instead of the isotropic smoothing.
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1 Introduction

Several studies have shown a significant relationship between blood pres-
sure, temperature and relative humidity (e.g., Barnett et al., 2007). Al-
though blood pressures are predicted reasonably well using environmental
variables such as temperature, it is interesting to consider the interaction
among these variables. We see that Generalized additive models (GAMs)
are a better choice over Generalized linear models (GLMs) for modelling the
effects of climatic and environmental variables (see Ravindra et al., 2019).
Additive models are the sum of smooth, typically non-linear functions of
the explanatory variables. These models allow for more flexible relation-
ship between the variables compared to linear modelling. As the nature
of the relationship between the response and explanatory variable(s) dic-
tates the model, it can be analyzed non-parametrically. GAMs can be seen
as an extension of GLMs, allowing the linear predictor to be expressed as
smooth additive functions. GAMs can thus handle both non-linear and non-
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monotonous relationships between the response and explanatory variables.
The variety of choices in smoothing functions can substantially improve
the performance of the GAM model.
We analyzed the systolic and diastolic blood pressures of 635 women ex-
amined during two follow-ups. The aim was to model the blood pressures
via socio-demographic covariates such as age, household, smoking pattern,
schooling years, etc., and focus on the interaction effect between the envi-
ronmental covariates.

2 Materials, Methods and Data

In the following section, we introduce the idea of GAMs and bivariate
tensor product splines to model interaction effects. We briefly explain the
data and the statistical analyses used. Finally, we state the critical results
found in our study.

2.1 Methodology

Consider response variable yi associated to covariates {x1i, x2i, . . . , xpi}.
The GAM for modelling the data {yi, x1i, x2i, . . . , xpi; i = 1, 2, .., n} can
be extended (see Wood, S. N., 2006) from GLMs with g(·) as a known
monotonic differentiable link function to have the following structure

g(E[yi]) = β0 + f1(x1i) + f2(x2i) + . . .+ fp(xpi) . (1)

Here, the functions f1(·), f2(·), . . . , fp(·) are unknown smooth functions to
be estimated. To simplify the estimation of these functions, we represent
them in such a way that Equ. (1) becomes a linear model. For simplicity, in
the following we consider a single function f(x) of one covariate x. We can
represent the function f(·) through a linear combination of a set of basis
functions {bj ; j = 1, 2, . . . , d} as

f(x) =

d∑
j=1

αjbj(x) , (2)

where the αj's are unknown spline coefficient parameters and d is the cor-
responding number of basis functions.
In the following, we use the B-spline basis function approach for the basis
functions bj(x) (see Eilers, P. H., and Marx, B. D., 2021). The smoothness
and the number of B-splines depend on the number of knots. So, we consider
a roughness penalty to overcome this strong dependence on the number of
knots. Penalization can be applied to k-th order differences between the
coefficients αj from Equ. (2). Thus, instead of regular least squares, i.e.∑n

i=1(yi−f(xi))
2, we minimize the penalized least squares (PLS) criterion.
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This is called the penalized spline (P-splines; see Eilers, P. and Marx, B.,
2021) approach.
The k-th order P-spline based on d = l+m− 1 B-splines can be estimated
by the following penalized residual sum of squares

PLS(λ) =
n∑

i=1

(yi −
d∑

j=1

αjbj(xi))
2 + λ

d∑
j=k+1

(∆kαj)
2, (3)

where ∆k is the k-th order difference among the coefficients αj . λ > 0 is
known as the smoothing parameter that controls the trade-off between the
model fitting and smoothness.
In order to model the interaction between two covariates, x1 and x2, we
can use the tensor product bases. We construct the univariate bases for x1

and x2 via aj(x1), j = 1, 2, . . . , d1, and bk(x2), k = 1, 2, . . . , d2, respectively.
The bivariate smooth function f12(x1, x2) of x1, x2 has the following form

f12(x1, x2) =

d1∑
j=1

d2∑
k=1

γjkaj(x1)bk(x2) . (4)

Here, we apply double penalization to both rows and columns of B-splines
with respective smoothing parameters λ1 and λ2.
In case that random effects are included in the model, we can extend the
predictor from Equ. (1) by Zb, where b ∼ N (0, Iσ2

b ) represents the vec-
tor of random effects and I an identity matrix of suitable dimension with
respect to the random effects components.

2.2 Study population

Data were collected from the IUF-Leibniz Research Institute for Environ-
mental Medicine, as a part of the Study on Influence of Air Pollution on
Lung, Inflammation and Aging (SALIA) cohort. The data comprises 635
women examined for systolic and diastolic blood pressures on two follow-
ups recorded between 2007 to 2008 and 2012 to 2013. The climate data,
temperature (in ◦C) and relative humidity (in %), were collected up to
30 days before the examination. Additional socio-demographic covariates
such as age, Body Mass Index (BMI), years in school, smoking behaviour,
diabetes, living conditions, location, etc., were updated at each follow-up.

2.3 Statistical analyses

We fit the blood pressure to a GAM with an identity link, and we select
P-splines as the smoothers for the covariates. We model the temperature
and relative humidity interaction via a bivariate tensor product P-spline.
Additionally, we consider random intercepts for each study participant to
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account for subject-specific variability. Taking the seasonal variations into
consideration, we subset the data into warmer and colder months based on
the date of examination and temperature. We examine the delayed effects
of environmental variables by taking moving average lags up to 30 days
before the examination. The lag structure includes lag 0, lag 0-1, lag 0-3,
lag 0-5, lag 0-10, lag 0-20 and lag 0-30. Here, lag 0 represents the daily mean
temperature and daily relative humidity taken on the day of examination
(temp 0,rh 0), i.e. no lag at all, and lag 0-30 represents the moving average
of daily mean temperature and daily relative humidity taken from the day of
examination to 30 days before the examination (temp mean30,rh mean30).
We choose the best moving average lag structure based on the Akaike
information criterion (AIC).

2.4 Results

We find a huge subject-specific random effect for both systolic and diastolic
blood pressures. The estimated standard deviations for the random effects
are 15.289 (12.807-18.252, 95 % CI) and 7.579 (6.298-9.121, 95 % CI) for
systolic and diastolic blood pressures, respectively. Based on the AIC score,
we select the model with lag 0 for systolic and diastolic blood pressures for
the warmer months (April - September). During colder months (October -
March), we select the model with lag 0-10 for systolic blood pressure and
lag 0-20 for diastolic blood pressure. Fig. 1 displays a robust and highly
non-linear interaction effect between daily mean temperatures and daily
relative humidity. From Fig. 2, we observe that the effect of age is linear
for both systolic and diastolic blood pressures. We also notice a negative
effect of age on diastolic blood pressure, which seems to be consistent with
epidemiological results (e.g., Pinto E., 2007).
Our findings suggest that the bivariate interaction between temperature
and relative humidity plays a critical role in modelling the blood pressures
during the warmer months (p-values < 0.01) more than in colder months,
where the effect was not significant. During colder months, the covariate
location (rural or urban) shows significance (p-value = 0.00674 for dias-
tolic and p-value = 0.0099 for systolic). Age also plays a significant role
(p-value < 0.01) for all models except for systolic blood pressure in colder
months. Some covariates such as the number of smoking packets per day
and BMI show a non-linear effect on blood pressure. However, other co-
variates, such as years in school, diabetes, and heating conditions do not
seem relevant for modelling systolic and diastolic blood pressures.

3 Conclusion

We have proposed a generalized additive model to understand the effect
of environmental factors on systolic and diastolic blood pressures. We also
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FIGURE 1. Bivariate tensor product of daily temperature and humidity. Left
panels: Warmer months, Right panels: Colder months.

quantified the interaction effect between temperature and relative humid-
ity using a bivariate tensor spline. To account for the repeated measure-
ment structure, we incorporated the random effects. As various studies
indicate the importance of seasonal variations in blood pressures, we sub-
set our study population into warmer and colder months (see Rosenthal,
T., 2004). Our data suggest that individual-specific covariates such as age
and location influence blood pressures. We also see a significant effect of
the interaction between climatic factors on blood pressure. Our finding
of systolic and diastolic blood pressures modelled best with climatic data
taken on the day of examination for warmer days and longer lags for colder
days confirms earlier research studies (Brook et al., 2011). However, note
that our study has a few limitations. First, the blood pressures have dif-
ferent scales of measurement for each follow-up. Although this seems to be
a small-scale impact on the results, it may still induce some bias. Second,
this study does not include the popular methods used in literature to de-
tect interaction effects. For example, stratification of the climatic factors
can give a more comprehensive and quantitative comparison of temperature
and relative humidity effects on blood pressure. While GAMs are widely
used in studying the effect of environmental factors on blood pressure, this
study considers the interaction among these environmental factors through
a bivariate tensor product spline.
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Abstract: In clinical settings, population-based reference ranges (also known
as normal or static reference ranges) are typically used when interpreting a
biomarker result for an individual by classifying their value as typical or atypi-
cal. In this paper, we propose the use of personalised adaptive reference ranges
when biomarkers are collected longitudinally for an individual. The method is
illustrated by an analysis of data collected longitudinally from elite athletes.
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1 Introduction

In a clinical setting, biomarkers are typically measured and evaluated as
biological indicators of a physiological state. A reference range, generated
from a cross-sectional analysis of healthy individuals free of the condition of
interest, is typically used when interpreting a set of biomarker test results
for a particular individual. An arbitrary percentile cut-point (typically the
95th or 97.5th percentile) is chosen to define abnormality. In practice, it
is quite important to estimate such reference ranges appropriately. For in-
stance, the clinical and biological assessment of individuals is usually based

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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on longitudinal monitoring of their biomarkers. In such cases, the individ-
ual has started to generate their own reference values and the interest is on
identifying meaningful changes in these values. Therefore, reference ranges
which adapt to account for both between and within individual variabil-
ity are needed for an effective monitoring. To rectify the issue, we propose
the use of personalised adaptive reference ranges in which reference ranges
adapt successively whenever a new measurement is recorded for the indi-
vidual. The approach undertaken includes a random intercept model and
will be illustrated by applying to real biomarker data collected longitudi-
nally from athletes in elite sport. We will also discuss the development of
multivariate adaptive reference regions, as an extension of our proposed
adaptive reference ranges when the interest is to assess an individual phys-
iology using multiple biomarkers over time.

2 Development of Adaptive Reference Ranges

Consider I independent individuals, with individual i consisting of ni in-
dependent normally distributed measurements, yij ; j = 1, ..., ni, each with
an unknown mean µi and an unknown variance σ2

i . A random intercept
model then will be defined for the biomarkers’ values as:

yij = µi + ϵij , i = 1, ..., I, j = i, ..., ni (1)

where µis are the subject level random intercepts following a normal dis-
tribution as µi ∼ N(µ, τ2) in which µ represents an overall mean and τ2

indicates the between individual variability. The error term indicated by
ϵij represents the within individual variability and is assumed to be in-
dependent of µi and also normally distributed, i.e. ϵij ∼ N(0, σ2

i ). For
convenience, we set γi = (µ, τ2, σ2

i ).
Measurement j from subject i, yij , will be considered as ’atypical’ if it
falls beyond the α

2 ∗ 100% and (1 − α
2 ) ∗ 100% quantiles of the distri-

bution: P (yij |y,γi); where y refers to the both subject i measurements
prior to time j (i.e. yi1, ..., yij−1) and other historical information from
other individuals (i.e. yi′j ; i′ ̸= i & j = 1, ..., ni′). Due to the (as-
sumed) independence of individuals, P (yij |y,γi) can be written in the form

P (yij |yi1, ..., yij−1, γi) ≡ P (yij |ȳj−1
i , γi); where ȳ

j−1
i is the average value of

the biomarker measurements for subject i before time j. It can be shown
that the distribution: P (yij |ȳj−1

i ,γi) can be found through (2) as:

yij |ȳj−1
i ,γi ∼ N

( µ
τ2 +

(j−1)ȳj−1
i

σ2
i

1
τ2 + j−1

σ2
i

,
1

1
τ2 + j−1

σ2
i

+ σ2
i

)
, (2)

An approximate Expectation-Maximisation (EM) algorithm (Ippel L,
2016), that relies on a few summary statistics that contain all the required

301



Roshan et al.

information from previous observations, will be used to find the estimates
of the model parameters at time j (see Roshan et. al, 2021). Once the
parameters are estimated, the 100(1 − α)% adaptive reference ranges for
subject i at time j will be generated as:

µ̂
τ̂2 +

(j−1)ȳj−1
i

σ̂2
i

1
τ̂2 + j−1

σ̂2
i

± z1−α
2

√
1

1
τ̂2 + j−1

σ̂2
i

+ σ̂2
i (3)

3 Longitudinal monitoring of elite runners

The longitudinal monitoring of oxidative stress (OS) are now widely used
in elite sports to inform the identification of fatigued states and underper-
formance in athletes. The Free Oxygen Radical Test (FORT) and the Free
Oxygen Radical Defence test (FORD) are two Point of Care (POC) tests
that indirectly provide an index of OS (Lewis, Nathan A., et al. 2015).
Such test results were collected from 11 elite distance runners to identify
meaningful changes in their test results over their training period. Interpre-
tation of changes in FORT and FORD test results in practice is typically
based on a comparison against a population-based static reference range.
However, for a more accurate assessment, we initially developed person-
alised adaptive reference ranges for the two longitudinally recorded FORT
and FORD test results for a particular athlete (see Figure 1). Bivariate
Adaptive Reference Regions were also generated to account for the joint
assessment of the two test results (see Figure 2). As can be seen from Fig-
ure 1, the developed adaptive reference ranges are considerably narrower
than the population-based static reference ranges suggesting that they are
more sensitive to any changes. For instance, although the static reference
ranges identified all of the test results as typical for that individual, the
adaptive methods identified the 7th FORT test result as atypical which
may need further consideration. Figure 2 on the other hand shows the de-
veloped bivariate reference regions for two FORT and FORD test results.
As it can be seen the suspected measurement at time point 7 is still outside
the joint reference region which provides further evidence of a potential ab-
normality for the athlete in question at this time point which should be
investigated further.
To construct the above mentioned bivariate adaptive reference regions we
extended the mixed effect model proposed in 1 where:

µi =

(
µi1

µi2

)
∼ MN

((
m1

m2

)
, D

)
; D =

(
τ11 τ12
τ21 τ22

)
ϵij =

(
ϵij1
ϵij2

)
∼ MN

((
0
0

)
,Σ

)
; Σ =

(
σ11 σ12

σ21 σ22

)
yij =

(
yij1
yij2

)
∼ MN

((
µi1

µi2

)
,Σ

)

302



Roshan et al.

In the same fashion, the pair of measurements j from subject i, yij =(
yij1
yij2

)
will be considered as ’atypical’ if it falls beyond the α

2 ∗ 100%

and (1− α
2 )∗100% quantiles of the distribution: P (yij |y,γi); where y refers

to the both subject i measurements prior to time j and other available
measurements from other individuals and γi is also a set of all model pa-
rameters (i.e. m1,m2, τ11, τ12, τ21, τ22, σ11, σ12, σ21, σ22).

4 Conclusion

In this study, methods for developing personalized adaptive reference
ranges for longitudinally recorded clinical biomarkers were presented with
an intention to help researchers and physicians make more reliable decisions
in terms of what can be considered as normal physiology for an individual.
The results have shown that the proposed adaptive methods are capable
of triggering ‘alerts’ and can be used as an early warning system that
warrant further attention and review. We further extended our model to
circumstances where more than one biomarker is of interest by developing
multivariate adaptive reference regions.

Acknowledgments: This publication has emanated from research con-
ducted with the financial support of Science Foundation Ireland (SFI) and
the European Regional Development Fund (ERDF) under grant number
13/RC/2073 P2.
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FIGURE 1. Static and adaptive reference ranges for (a) FORT and (b) FORD
test results for a female athlete.

FIGURE 2. Bivariate adaptive reference regions for the two FORT and FORD
test results for a female athlete.
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Abstract: We propose a new globally coupled hierarchical dynamic Bayesian
network (DBN) model for learning the structure of the mTOR protein signalling
pathway from immunoblotting protein phosphorylation data. We follow an hier-
archical Bayesian modelling approach, as data were collected under two different
experimental conditions. Moreover, since protein phosphorylation measurements
were taken at non-equidistant time points, we propose to use smoothing splines
and Gaussian processes for predicting the missing equidistant values.

Keywords: Network learning, mTOR pathway, non-equidistant measurements.

1 Introduction

Dynamic Bayesian networks (DBNs) and their non-homogeneous hierarchi-
cal extensions are popular statistical models for learning the structures of
cellular networks, such as gene regulatory networks and protein signalling
pathways from time series data. In our study we aim to learn the struc-
ture of the mammalian target of rapamycin complex 1 pathway (mTOR)
protein signalling pathway from immunoblotting protein phosphorylation
data. The mTOR signalling pathway plays a fundamental rule in regulating
and controlling many important cellular processes, such as cell growth and
proliferation.
After two experimental treatments k = 1 (without insulin) and k = 2 (with
insulin) N = 11 phosphorylation sites of eight key proteins were measured
after t = 0, 1, 3, 5, 10, 15, 30, 45, 60, 120 minutes. On the one hand, since
insulin is known to have an effect on the intensities of some of the pro-
tein interactions, the two time series cannot be merged and be analysed in

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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one batch. On the other hand, both time series are potentially too short
to be analyzed separately. As a consensus, we propose a new hierarchical
Bayesian model with interaction-specific coupling (strength) parameters.
For each individual protein-protein interaction our new model features a
specific coupling (strength) parameter that regulates the similarity of this
particular interaction across the two conditions. A low coupling parameter
enforces the interaction to stay (rather) constant, while a large coupling pa-
rameter allows the interaction intensity to change among conditions. Our
new model improves upon the globally coupled hierarchical DBN model
from Grzegorczyk and Husmeier (2013). It allows for more flexibility by
introducing interaction-specific coupling parameters rather than letting all
regulators of a regulatee share the same coupling parameter. To derive
the model we borrow modelling ideas from Shafiee Kamalabad and Grze-
gorczyk (2021), which introduced a sequentially coupled hierarchical DBN
with segment-specific coupling parameters. We adapt the conceptual idea
to define a new globally coupled hierarchical DBN with covariate-specific
coupling parameters.
We also show that interpolation methods (smoothing splines and Gaussian
processes) can predict the required missing equidistant protein values and
that this improves upon the widely applied but rather naive approach to
treat observed non-equidistant data points as if they were equidistant.

2 Methods

Consider two linear regression models that share the same response, the
same m covariates and the same noise variance parameter, σ2 > 0, but
have different regression coefficient vectors βk ∈ Rm (k = 1, 2):

yk|(βk, σ
2) ∼ N (Xkβk, σ

2I) (k = 1, 2)

where yk ∈ Rnk and Xk ∈ Rnk,m are the k-th response vector and design
matrix, respectively, and σ−2 ∼ GAM(ασ, βσ). We introduce the following
new hierarchical prior:

βk|
(
σ2,λ2,µ

)
∼ Nm

(
µ, σ2diag(λ2)

)
(k = 1, 2)

µ ∼ Nm(0, I)

where λ2 := (λ2
1, . . . , λ

2
m) is a vector of m covariate-specific coupling pa-

rameters, and diag(λ2) is a diagonal matrix with the elements of λ2 on
the diagonal. On the coupling parameters we impose another hierarchical
prior:

λ−2
l |b̃ ∼ GAM(ã, b̃) (l = 1, . . . ,m)

b̃ ∼ GAM(α, β)
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For the density of the posterior distribution we then have:

p(β1,β2,λ
2, b̃, σ2,µ|y1,y2) ∝

(
2∏

k=1

p(yk|βk, σ
2)p(βk|σ2,λ2,µ)

)

·p(µ) · p(σ2) ·

(
m∏
l=1

p(λ2
l |b̃)

)
· p(b̃)

For a known covariate set, Gibbs sampling can be used to generate pos-
terior samples of the model parameters. All full conditional distributions
can be computed analytically. When the true covariate set is unknown,
additional Reversible Jump Markov Chain Monte Carlo (RJMCMC)
moves on the covariate set can be implemented to also average across all
possible covariate sets. We implement covariate addition, deletion and
exchange moves to allow the covariate set (and so the dimensionality of
the parameter space) to vary during the simulation. For lack of space we
here cannot provide the technical details.

A conventional assumption for dynamic Bayesian networks (DBNs) is that
all interactions are subject to a time lag of one time unit. The task of learn-
ing a dynamic network among variables Z1, . . . , ZN can then be subdivided
into N separate regression tasks. In the n-th regression model Zn takes the
role of the response and the t-th observation of Zn is explained by the
values of the other variables (covariates) at the preceding time point t− 1.
Sampling covariate sets for Zn then refers to sampling the regulators of
Zn. The score of each possible network interaction Zi → Zj is the relative
frequency with which the sampled covariate sets for Zj contained Zi.

3 Results

DBN models assume that data points have been measured at equidis-
tant time points (t = 1, 2, 3, . . .), but the mTOR measurements are
non-equidistant (tk ∈ {0, 1, 3, . . . , 60, 120}). Often this critical mismatch
between model and data is ignored, treating the temporally ordered data
points as if they were equidistant (‘simple-shift’). We instead propose
to predict the missing equidistant data using (smoothing) splines and
Gaussian processes (GPs), and we cross-compare the methods in terms of
predictive probabilities (PPs) obtained by leave-one-out cross validation
(LOOCV-PPs). Figure 1 shows the LOOCV-PPs results for the widely
applied naive simple shift approach and the two proposed interpolation
methods. It can seen that the simple shift yields much worse results than
the two interpolation methods. Moreover, (smoothing) splines perform
slightly (but significantly) superior to Gaussian processes (GPs).
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FIGURE 1. Comparing the three interpolation methods. All results were
obtained with the newly proposed hierarchical DBN; cf. Section 2. Left: Boxplots
of LOOCV-PPs for the naive shift and the two proposed interpolation methods
(GP and splines). Right: Boxplots of the relative differences in favour of splines.
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FIGURE 2. Comparing the four (hierarchical) DBN models. All results
were obtained on the smoothing splines interpolated data set. Left: Boxplots of
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Right: Boxplots of the relative differences in favour of NEW.

On the smoothing splines interpolated data set we compare the newly pro-
posed model (N) with a standard DBN (D) that ignores the conditions and
merges both time series, an uncoupled model (U) which learns independent
regression vectors, and the less flexible globally coupled hierarchical DBN
(G) from Grzegorczyk and Husmeier (2013), which couples all covariates
with the same coupling strength. Figure 2 shows the LOOCV-PP results
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On the smoothing splines interpolated data set we compare the newly
proposed model (N) with a standard DBN (D) that ignores the conditions
and merges both time series, an uncoupled model (U) which learns
independent regression vectors for both conditions, and the less flexible
globally coupled hierarchical DBN (G) from Grzegorczyk and Husmeier
(2013), which couples all covariates with the same coupling strength.
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FIGURE 3. Predicted structure of the mTOR protein signalling path-
way. Results were obtained with the newly proposed hierarchical DBN model
(cf. Section 2) on the smoothing splines interpolated data set. There are N = 11
nodes (phosphorylation sites) and the 16 edges (protein interactions) whose scores
exceeded 0.7 are shown. Edges whose scores exceeded 0.9 are in bold. The edge
scores refer to the relative frequencies with which the corresponding interactions
(i.e covariate-response relations) were posterior sampled within our RJMCMC
based model averaging approach.
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Figure 2 shows the LOOCV-PP results for this DBN model comparison.
It can be seen that the two extreme approaches, merging all data (D)
or allowing for independent interaction parameters (U), yield relatively
bad results. The two globally coupled models yield better results with the
newly proposed refined model (N) improving slightly (but significantly)
upon the original globally coupled DBN (G).

Based on the empirical results of our comparative evaluation study (cf. Fig-
ures 1-2), we apply the new hierarchical DBN model (N) to the smoothing
splines interpolated data set to learn the structure of the mTOR protein
signalling pathway. Figure 3 shows the predicted mTOR pathway.

4 Conclusions

To predict the structure of the mTOR protein signalling pathway from
immunoblotting data we have proposed a new refined globally coupled
hierarchical DBN model and we have used two established interpolation
methods to estimate missing equidistant data. The results of a first compar-
ative evaluation study (see Figure 1) suggest that smoothing splines (and
Gaussian processes) can be used to interpolate missing equidistant data
values and that these interpolation methods lead to better results than the
naive simple shift approach that treats non-equidistant data as if they were
equidistant. A second comparative evaluation study (see Figure 2) revealed
that the new model performs better than three earlier proposed (hierarchi-
cal) DBN models. In particular the new model improves upon an earlier
proposed globally coupled hierarchical model. Finally we have applied the
new DBN model on the smoothing splines interpolated data set to learn
the structure of the mTOR signalling pathway. The predicted structure of
the mTOR protein signalling pathway is shown in Figure 3.
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Abstract: Conditional logistic regression is the standard approach for the anal-
ysis of matched case-control studies. This parametric model consists of fitting an
additive linear predictor function, which focuses on main effects. An alternative
tree-based method is proposed that allows for more flexibility, in particular when
non-linear effects and interactions between confounding variables are present.
The method is illustrated by a case-control study on cervical cancer.
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1 Parametric Conditional Logistic Regression

Consider a case-control study conducted to determine the effect of an ex-
posure on a binary outcome, for example, the presence of a specific disease.
To guarantee balance of potential confounders between cases and controls
one frequently applies matching, where for each case a certain number of
controls is selected that coincide with regard to important factors (Man-
sournia et al., 2018). The classical method to analyse matched case-control
data is the conditional logistic regression model of the form

log

(
P(yij = 1)

P(yij = 0)

)
= αi + zTijγ, i = 1, . . . , n, j = 1, . . . ,mi , (1)

where yij ∈ {0, 1} denotes the binary outcome and zij is a set of co-
variates with coefficient vector γ. The observations come in n clusters
si, i = 1, . . . , n, of size mi, which is accounted for in the model via cluster-
specific intercepts αi. In matched case-control studies, it holds that yij = 1

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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for cases and yij = 0 for controls and that the clusters are defined by
the matching strata. The vector zij collects the exposure variable and all
further confounding variables of observation j in cluster i.
We assume each of the n strata to contain only one case, i.e.

∑mi

j=1 yij = 1.
For simplicity, in each stratum we assume the first observation to be the
case, i.e. yi1 = 1 for i = 1, . . . , n. Estimates of the parameters in (1) are
then derived by maximizing the conditional log-likelihood

lc(γ) =
n∑

i=1

zTi1γ − log

mi∑
j=1

exp(zTijγ)

 ,

where the stratum-specific intercepts αi are eliminated from the likelihood
by conditioning on the number of cases per stratum, see Breslow and Day
(1980) for further details.

2 Tree-based Conditional Logistic Regression

In the parametric model (1) it is assumed that the effect of the confounding
variables on the outcome can be described by a linear predictor function.
This, however, may be not appropriate when non-linear effects or interac-
tions between the covariates occur in the data. To address this issue, we
propose to implement the concept of recursive partitioning in the covariate
space (Breiman et al., 1984) within the framework of conditional logistic
regression. Thus, we allow for a very flexible confounding structure and
take advantage of the fact that conditional logistic regression accounts for
the matching structure.
The basic idea is to replace the linear predictor of model (1) by a decision
tree, which yields a conditional logistic regression model of the form

log

(
P (yij = 1)

P (yij = 0)

)
= αi + f(zij) (2)

where f(zij) describes the effect of the variables collected in zij represented
by a tree. With S1, . . . , St representing the terminal nodes of the tree, f(zij)
can be denoted as

f(zij) = δ1I(zij ∈ S1) + . . .+ δtI(zij ∈ St) .

All nodes are determined by a product of indicator functions. For example,
if the splits were in the metric variables z1 and z4 a node may be determined
by I(zij ∈ S) = I(zij1 > 20) I(zij4 ≤ 10).
Starting from an initial model containing the strata-specific intercepts, only,
we gradually search for binary splits in the covariates collected in z that
further improve the model fit. A split divides the current node into two child
nodes, and is incorporated into the model using a corresponding indicator
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variable. For a metric or ordinal variable, the model after the first split at
threshold c in variable zk has the form

log

(
P (yij = 1)

P (yij = 0)

)
= αi + δI(zijk ≤ c) ,

where I(·) is the indicator function. Successively, the variable and the split
point are chosen that lead to the highest improvement of the conditional
log-likelihood of the model.
It should be noted that each split has an effect on all remaining termi-
nal nodes, because all parameter estimates change if an additional split is
performed. This is in contrast to the way trees are grown in traditional
recursive partitioning where the remaining terminal nodes are not affected
by a new split.
We propose to directly control the size of the tree by early stopping. To do
so, one examines all the null hypotheses H0 : δ = 0 and H1 : δ ̸= 0 (of the
newly added parameter) and selects the split with the maximal LR test
statistic (minus two times the difference in the conditional log-likelihood
values). To decide whether the selected split should be performed, we apply
a concept based on maximally selected statistics (Hothorn and Lausen,
2003). The basic idea is to investigate the dependence of the binary outcome
and the selected variable at a global level that takes the number of split
points into account. For one fixed variable zk, one simultaneously considers
all LR test statistics Tkck , where ck are from the set of possible split points,
and computes the maximal value statistic Tk = maxck Tkck . The p-value
that can be obtained from the distribution of Tk provides a measure for
the relevance of variable zk. As the distribution of Tk is unknown we use a
permutation test (with significance level α/p, where p denotes the number
of covariates) to obtain a decision on the null hypothesis. By computing the
maximal value statistics for a large number of permutations of variable zk
one obtains an approximation of the distribution under the null hypothesis
and the corresponding p-value. If significant, the selected split is performed,
otherwise the algorithm is terminated.
The tree algorithm may lead to partitions in the covariate space where
perfect discrimination between cases and controls is reached. Therefore, to
guarantee the existence of all parameter estimates, we allow for an addi-
tional refitting step after the final tree has been determined. This refitting
step employs regularization using a small L2 penalty to stabilize the tree
parameter estimates δ1, . . . , δt. Optimization is then applied to the penal-
ized log-likelihood

lp(·) = lc(·) + λ
t∑

o=1

δ2o ,

where λ is a tuning parameter set to a small value. A standard value we
used was λ = 10−20.
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3 Separating the Exposure Variable

In most matched case-control studies one is specifically interested in the
association (or rather the causal effect) of the exposure variable (in the
following denoted by x) on the outcome. A tree-based conditional logistic
regression model that separates the exposure effect from the remaining
covariates can be denoted as

log

(
P (yij = 1)

P (yij = 0)

)
= αi + xijβ + f(zij) , (3)

where f(zij) describes the effect of the covariates represented by a tree
and β is the regression coefficient (interpretable as the adjusted log odds-
ratio) of the exposure. Tree building and estimation of the parameters in (3)
can be performed in the same way as described in the previous section.
To derive a confidence interval for the exposure effect, one cannot directly
use the confidence interval provided by the underlying conditional logistic
model as it will not take the selection process into account when build-
ing the tree. Accordingly, these confidence intervals would underestimate
the variability of the point estimate. Therefore, we propose to calculate
confidence intervals via a nonparametric bootstrap approach. A bootstrap
sample is generated by sampling n strata with replacement from the original
data. For each bootstrap sample, we fit the model and save the correspond-
ing estimate for the exposure effect. From a total of B estimates we then
calculate the corresponding empirical quantiles as the boundaries of the
confidence interval.

4 TeQaZ Study

For illustration, the proposed method is applied to a real data example.
The data originate from the so-called TeQaZ study (Tanaka et al., 2021),
a case-control study on cervical cancer. The main focus of the study was
to examine the effect of frequent participation in cervical cancer screen-
ing (CCS) on the odds of cervical cancer. The exposure variable CCS was
defined as frequent participation, if women had attended CCS at least every
three years within the past ten years, including at least once in the three
years preceding diagnosis. Matching was done using age and residence area
where controls were matched to cases only if they lived in the same area and
if their age was at maximum 2 years younger or older than the age of the
corresponding case. In total there were 14 potential confounding variables.
Additionally, we calculated the variable Age.Diff defined as the difference
between each individuals age and the average age in the respective stratum.
Exclusion of the observations with missing values in any of the variables
resulted in an analysis data set with 170 cases and 425 controls.
Figure 1 shows the resulting tree when fitting model (2) without a sepa-
rate exposure effect. Interestingly, the first chosen split is in the exposure
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FIGURE 1. Analysis of the TeQaZ study. Tree for the model without a separate
CCS exposure effect. For all terminal nodes, the respective parameter estimates
and the numbers of cases n1 and controls n0 are displayed.
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FIGURE 2. Analysis of the TeQaZ study. Tree for the model with a separate
CCS exposure effect. For all terminal nodes, the respective parameter estimates
and the numbers of cases n1 and controls n0 are displayed.

variable CCS, where infrequent participation (i.e. CCS = 1) is associ-
ated to higher odds for cervical cancer than frequent participation. Further
splits are done in the variables Education (for CCS = 1), and Income and
Age.Diff (for CCS = 0).
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Figure 2 shows the resulting tree of the model where CCS is incorporated in
a separate exposure effect. Here, the first split is done for Age.Diff, leading
to a terminal node with perfect separation (Age.Diff > 1) and a very small
parameter estimate. This split can be seen as a further age adjustment
additional to the effect of age-matching accounting for potential residual
age differences. For Age.Diff ≤ 1 (the node where most of the observations
fall into), further splits are performed in Income and Education, leading to
an interaction between these variables. It is seen that higher income and
educational level seem to act as protective factors for cervical cancer. The
adjusted odds ratio for CCS with 95% confidence interval was estimated
to be 5.878 [4.119; 28.202], again indicating higher odds for cervical cancer
in case of infrequent participation.
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Abstract: Accurate and reliable probabilistic predictions have been becoming
more and more important over the last decades and they are an essential tool for
proper risk assessment and strategic planning. In order to provide full probabilis-
tic forecasts, distributional regression models are frequently used. Such models
range from basic generalized linear models (GLM) over generalized additive mod-
els (GAM) to generalized additive models for locate, scale, and shape (GAMLSS)
and other types of refined distributional regression models.
For assessing the goodness of fit of such probabilistic regression models, graphical
assessment techniques are an important complement to proper scoring rules and
help to identify possible model misspecifications. Based on a case study of prob-
abilistic precipitation forecasts, three different model specifications are evaluated
graphically to reveal different sources of misspecification such as censoring at zero,
hereoscedasticity, and heavy tails. The graphics either evaluate marginal calibra-
tion by comparing observed and fitted frequencies using variations of so-called
rootograms. Or alternatively they assess probabilistic calibration by evaluating
the distribution of the probability integral transform (PIT) on different scales
using histograms or variations of quantile-quantile plots. Relative strengths and
weaknesses in revealing the sources of misfit are highlighted.
A unified implementation is provided in the newly developed R package topmodels
(https://topmodels.R-Forge.R-project.org/).

Keywords: Graphical model assessment; Distributional regression

1 Case study

Weather forecasts are typically generated by physically-based numerical
weather prediction models. To account for uncertainty, multiple forecasts
are created with slightly modified conditions which build an ensemble. This

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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allows to not only retrieve information about the expected amount of pre-
cipitation but also the associated uncertainty. To better calibrate these raw
ensemble forecasts, statistical post-processing is typically applied.
Revisiting three model specifications considered by Messner, Mayr, and
Zeileis (2010), we use different graphical model assessment techniques for
identifying possible model misspecifications and thus aiding the selection
of a well-calibrated model.
The data used contains observed accumulated precipitation amounts for
Innsbruck and the corresponding ensemble mean (ensmean) and ensemble
standard deviation (enssd) of total accumulated precipitation amounts be-
tween 5 and 8 days in advance. Following previous studies, the square root
of precipitation is used which has been shown to improve the calibration.
For comparison, three models are employed. A homoscedastic Gaussian lin-
ear regression model which does not properly account for the non-negative
nature of precipitation, and two heteroscedastic regression models, left-
censored at zero – one assuming a Gaussian and one a logistic underlying
response distribution.

Distribution Location Scale

yi ∼ N (µi, σ
2
i ) µ̂i = β̂0 + β̂1 · ensmeani log(σ̂i) = γ̂0

yi ∼ N0(µi, σ
2
i ) µ̂i = β̂0 + β̂1 · ensmeani log(σ̂i) = γ̂0 + γ̂1 · log(enssdi)

yi ∼ L0(µi, σ
2
i ) µ̂i = β̂0 + β̂1 · ensmeani log(σ̂i) = γ̂0 + γ̂1 · log(enssdi)

2 Model assessment

According to the seminal work of Gneiting, Balabdaoui, and Raftery (2007),
probabilistic forecasts aim to maximize the sharpness of the predictive
distributions subject to calibration. Moreover, this can be further distin-
guished into marginal and probabilistic calibration.

2.1 Marginal calibration

Marginal calibration is generally concerned with whether the observed fre-
quencies of the response variable yi match the corresponding expected fre-
quencies from the model. For continuous response variables, frequencies for
intervals (bj , bj+1] are considered based on breaks bj (j = 1, . . . , k). The
expected frequencies are computed based on the predicted cumulative dis-
tribution function (CDF) F (·|θ̂) where θ = (µ, σ) denotes the joint model
parameters.

observedj =
N∑
i=1

I(yi ∈ (bj , bj+1]),
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expectedj =
N∑
i=1

[
F (bj+1|θ̂i)− F (bj |θ̂i)

]
.

Figure 1 shows hanging rootograms for the two Gaussian models, where the
observed frequencies are hanging from the expected ones. The marginal
calibration is assessed on the observational scale, which allows a direct
interpretation. The heteroscedastic Gaussian model clearly underfits zero
precipitation amounts as it is not accounting for the observed point mass
at zero. Additionally, a weak wavelike pattern indicates a slight overfitting
of precipitation sums between 0 and 5 and an underfitting of precipita-
tion above. In contrast, the heteroscedastic left-censored Gaussian model
provides a fairly good marginal fit.
However, due to the aggregation over all individual predictive CDFs
F (yi|θ̂i) for i = 1, . . . , N , a statement about a possible violation of the
distributional assumption is not easily possible.
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FIGURE 1. Hanging rootograms for the homoscedastic Gaussian model (left) and
the heteroscedastic left-censored Gaussian model (right). Expected frequencies
shown in red (line), observed frequencies in gray (bars).

2.2 Probabilistic calibration

Compared to the marginal calibration which is obtained on the observation
scale, the probabilistic calibration is always performed on the probability
scale by considering the probability integral transform (PIT) ui = F (yi|θ̂i).
Additionally, this may need to be randomized for (partially) discrete ob-
servations to obtain uniformly distributed PIT values if the model is well
calibrated. Alternatively, the PIT values can be mapped to other scales,
e.g., by using the inverse of a standard normal CDF Φ(·), to obtain (ran-
domized) quantile residuals (ri) as suggested by Dunn and Smyth (1996).

ri = Φ−1
(
ui) with ui =

{
F (yi|θ̂i) if F (·) continuous
U
[
F (yi − 1|θ̂i), F (yi|θ̂i)

]
if F (·) discrete
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Whether the distribution of ui or ri is uniform or normal, respectively,
can then be checked using standard graphics like histograms or quantile-
quantile (Q-Q) plots. As small too medium deviations can be quite hard
to detect in Q-Q plots, detrending the plot by considering deviations of
empirical and theoretical quantiles (also called worm plots) can be helpful.
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FIGURE 2. Q-Q plot (left) and worm plot (right) for the homoscedastic Gaussian
model (red), as well as the heteroscedastic left-censored Gaussian (green) and the
heteroscedastic left-censored logistic (blue) model.

Both, the Q-Q plot and the worm plot included in Figure 2 show an obvi-
ous misfit of the homoscedastic Gaussian model on both tails of the dis-
tribution. While the marginal calibration (Fig. 1) clearly shows that this
is mainly due to missing censoring, the probabilistic calibration in this
example does not allow to uncover the sources causing this lack of fit.
While the scale itself is not easily interpretable, the probabilistic calibration
allows to check if the distributional assumption is correct. Comparing both
left-censored heteroscedastic models, a slight advantage can be seen for the
one using a left-censored logistic distribution as its heavier tails lead to a
better fit, especially for high quantiles.
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1 Introduction

Parameter estimation in mixed effects logistic regression by maximum like-
lihood (ML) is prevalent in statistical practice, because these estimators are
expected to achieve optimal maximum likelihood asymptotics under stan-
dard regularity conditions. However, there exist data configurations that
lead to estimates on the boundary of the parameter space, such as infinite
values for fixed effects and singular or infinite variance components. Such
estimates can cause havoc to numerical estimation procedures and can, if
undetected, substantially impact inferential procedures resulting in spuri-
ously strong or weak conclusions (e.g. Chung et al. 2013, Section 2.1). We
introduce a maximum softly penalized likelihood (MSPL) estimator that
always lies in the interior of the parameter space and preserves ML asymp-
totics. The penalty we propose consists of appropriately scaled versions
of Jeffreys invariant prior for the model with no random effects, and of
compositions of the negative Huber loss functions for the variance compo-
nents. The resulting MSPL estimates are guaranteed to be in the interior
of the parameter space. Scaling the penalty appropriately guarantees that
i) penalization is “soft” enough for the MSPL estimator to have the same
optimal asymptotic properties expected by the ML estimator, and ii) that
the fixed effects estimates are equivariant under linear transformations of
the model parameters, such as contrasts, in the sense that the MSPL es-
timates of linear transformations of the fixed effects parameters are the
linear transformations of the MSPL estimates.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Mixed effects logistic regression

Consider a mixed-effects logistic regression with k clusters and ni observa-
tions in the ith cluster (i = 1, . . . , k). The likelihood about the fixed effects
β ∈ ℜp and variance components Σ ∈ ℜq×q is given by

L(β,Σ) = (2π)−kq/2 det(Σ)−k/2
k∏

i=1

∫
ℜq

ni∏
j=1

µ
yij

ij (1−µij)
1−yij exp

{
−u

T
i Σ

−1ui

2

}
dui ,

(1)
where µij = Pr(yij = 1 | ui,xij , zij) for fixed and random effects covariates
xij , zij and random effects ui. The conditional means µij are linked to the
linear predictor ηij = x

T
ijβ + zijui by log(µij/(1− µij)) = ηij . For clarity

of presentation, all developments are stated for the exact model likelihood
L(β,Σ), which is generally not available in closed form, but they can be
extended to approximate log-likelihoods under suitable conditions on the
approximation error.

3 Motivating example

TABLE 1. Culcita data of McKeon et al. (2012)

Block

Treatment 1 2 3 4 5 6 7 8 9 10

none 0,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,0
crabs 0,0 0,0 0,0 0,0 1,1 1,1 1,1 1,1 1,1 1,1
shrimp 0,0 0,0 0,0 0,0 0,1 1,1 1,1 1,1 1,1 1,1
both 0,0 0,0 0,0 0,0 0,0 0,1 1,1 1,1 1,1 1,1

As a motivating example, we consider the Culcita data set of McKeon et al.
(2012) as provided in the worked examples of Bolker (2015), which is shown
in Table 1. The complete randomized block design data (four treatments,
ten temporal blocks, two replications per block) records coral-eating sea
stars (Culcita) attacking coral harbouring different protective symbionts
(none, crabs, shrimp, both). Upon removal of the atypical observation in
the top right corner of Table 1, we associate predation to treatment effects
using a mixed effects logistic regression with a random intercept per block.
We estimate β and log σ by ML, with a 200-point Gauss-Hermite quadra-
ture approximation to the log-likelihood and three different optimization
routines “CG”, “BFGS”, “nlm” from the R (R Core Team 2022) optimx
package. Results are shown in Figure 1. The estimates and asymptotic 95%
confidence intervals based on the negative Hessian of the approximate log-
likelihood are markedly dissimilar and notably extreme on the logistic scale.
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The large estimated standard errors are indicative of an almost flat approx-
imate log-likelihood around the estimates. In this case, the ML estimates
for the fixed effects β are in reality infinite in absolute value. However,
due to different stopping criteria of the various optimization routines, the
estimates from the various ML implementations appear finite and distinct.
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FIGURE 1. ML estimates (points) and asymptotic 95% confidence intervals
(lines) from fitting a mixed effects logistic regression model to the Culcita data
upon removal of an outlier observation.

4 Non-boundary estimates

Denote by ∂Θ the boundary of Θ and let θ(r), r ∈ ℜ, be a path in the
parameter space such that limr→∞ θ(r) ∈ ∂Θ. A common approach to
resolving issues with ML estimates being in ∂Θ, like those encountered in
the example of Section 3, is to introduce an additive penalty P (θ) to the
(approximate) log-likelihood that satisfies limr→∞ P (θ(r)) = −∞. Hence,
if ℓ(θ) is bounded from above and there is at least one point θ ∈ Θ such
that ℓ(θ) + P (θ) > −∞, then θ̃ is in the interior of Θ.

5 Composite penalty

Let θ = (βT,ψT)T and ℓ(θ) = logL(β, s(ψ)) with s(ψ) = Σ,
where L(β, s(ψ)) is (1). The parameter vector ψ is defined as
ψ = (log l11, . . . , log lqq, l21, . . . , lq1, l32, . . . , lq2, . . . , lqq−1)

T, where lij
(i > j) is the (i, j)th element of the lower-triangular Cholesky factor
L of Σ, i.e. Σ = LLT. Consider the estimator

θ̃ = arg max
θ∈ Θ

{
ℓ(θ) + c1P(f)(β) + c2P(v)(ψ)

}
, (2)
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where c1 > 0, c2 > 0, and P(f)(β) and P(v)(ψ) are unscaled penalty func-
tions for the fixed effects and variance components, respectively.
For the unscaled fixed effects penalty, we use the logarithm of Jeffreys
invariant prior for the corresponding GLM, that is

P(f)(β) =
1

2
log det

(
k∑

i=1

XT

iW iXi

)
, (3)

where Xi collects the covariates for the fixed effects in model (1), andW i

is a diagonal matrix with jth diagonal element µ
(f)
ij (1− µ

(f)
ij ) with µ

(f)
ij =

exp(η
(f)
ij )/{1 + exp(η

(f)
ij )} and η

(f)
ij = xT

ijβ. Note that for any invertible

matrix C ∈ ℜp×p, and for γ = Cβ, P(f)(γ) = P(f)(β) − log det(C). As a

result, for any ψ, the MSPL fixed effects estimates of γ are simply γ̃ = Cβ̃.
Hence, one can obtain MSPL fixed effects estimates and corresponding
estimated standard errors for arbitrary sets of scaled parameter contrasts
of the fixed effects, when estimates for one of those sets of contrasts are
available and with no need to re-estimate the model.
For the variance components penalty, we use a composition of negative
Huber loss functions on the components of ψ. In particular,

P(v)(ψ) =

q∑
i=1

D(log lii) +
∑
i>j

D(lij) , (4)

where

D(x) =

{
− 1

2x
2, if |x| ≤ 1

−|x|+ 1
2 , otherwise

.

For the remainder of this work, denote by P (θ) the composite penalty
function in (2) with components (3) and (4). It can be shown that
lim
r→∞

P (θ(r)) = −∞, for any sequence θ(r) such that lim
r→∞

θ(r) ∈ ∂Θ,

so that the resulting estimator is guaranteed to be in the interior of the
parameter space as long as there is at least one point in Θ such that the
penalized log-likelihood is not minus infinity. Hence, the MPL estimates for
β,ψ have finite components and the value of Σ̃ = s(ψ̃) is guaranteed to be
non-degenerate in the sense that it is positive definite with finite entries,
implying correlations away from one in absolute value.

6 Consistency and asymptotic normality

To mitigate any distortion of the estimates by the penalization of the log-
likelihood, we choose the scaling factors c1, c2 to be “soft” enough to control
∥∇P (θ)∥ in terms of the rate of information accumulation rn, for which

r−1
n J(θ)

p→ I(θ) as n → ∞, where J(θ) = −∇∇Tℓ(θ) is the observed
information matrix and I(θ) is a O(1) matrix.
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It can be shown that for c1 = c2 = 2
√
p/n, which corresponds to the square

root of the average approximate variances of η̂
(f)
ij at β = 0p,

sup
θ∈Θ

∥∇θP (θ)∥ ≤ p2√
n
max
i,s,t

|[Xi]st|+
√

2pq(q + 1)

n
,

which, under some model regularity conditions, is sufficient to es-
tablish consistency and asymptotic normality of θ̃ as long as
maxi,s,t |[Xi]st| = Op(n

1/2). The condition on the maximum of the ab-
solute elements of the model matrix is not unreasonable in practice. It
certainly holds true for covariates such as dummy variables, as included in
the real-data example in this work. It is also true for model matrices with
subgaussian random variables with common variance proxy σ2.

7 Simulation study
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FIGURE 2. Simulation summaries for MSPL, bglmer and ML estimators from
simulating 10 000 samples from (1) from the Culcita data at the ML estimates.

We simulate 10 000 independent samples of responses for the randomized
complete block design data from McKeon et al. (2012) at the ML estimates.
For each sample, we compute the ML and MSPL estimates. We compare
these estimates with the bglmer routine of Chung et al. (2013), which was
developed to address degenerate parameter estimates in GLMMs, using a
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normal (bglmer[n]) and t (bglmer[t]) prior penalty for the fixed effects and
a gamma-prior inspired penalty for the random effects variance. All esti-
mators use a 100-point adaptive Gauss-Hermite quadrature approximation
to the model likelihood. Boundary parameter estimates were discarded for
the calculation of summary statistics; results are given in Figure 2. The
number of used estimates is given in the top right panel (R). The top left
panel shows the centred sampling distribution of the parameter estimates
for MSPL, bglmer and ML as returned by the optimization routines. With
the exception of MSPL, these boxplots are not estimates of the actual
density of the ML and bglmer estimators, but rather of their conditional
density given that they do not take boundary values. The bottom panels
give simulation based estimates of the bias, variance, mean squared error
(MSE), the probability of underestimation (PU) and the coverage based on
95%Wald-confidence intervals. Clearly, the amount of shrinkage induced by
the normal and t priors is excessive. Although the resulting estimators have
small finite-sample variance, they have excessive finite-sample bias, which
is often at the order of the standard deviation. The combination of small
variance and large bias readily impacts first-order inferences. Wald-type
confidence intervals about the fixed effects systematically undercover the
true parameter value. Finally, both bglmer[n] and bglmer[t] do not appear
to prevent extreme positive variance estimates. The MSPL gives estimates
in the interior of the parameter space, has very small bias, accurate coverage
from the asymptotic 95% confidence intervals, the smallest mean squared
error (MSE), and a well calibrated probability of underestimation (PU).
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Abstract: In this work we analyze the evolution in the careers of 369 Ital-
ian male middle-distance runners, born in 1988, considering their seasonal best
performances in the 800, 1500, 5000 meters races during the period 2006–2019.
In this context, clustering of trajectories allows to identify the possible careers
of one athlete, a relevant aspect for coaches that aim at planning the future
and tracking the progress of their athletes. However, differently from other dis-
ciplines, the presence of missing values for middle distance athletes is a critical
aspect as they are potentially correlated with performances. On one side, drop-in
and drop-out phenomena implicitly lead to a different development in each ath-
lete’s career history. On the other side, middle distance athletes can compete in
different races, an aspect which is typically related to their personal attitudes.
We propose a Bayesian clustering model in which both the observed trends and
the presence of missing data inform on the clustering structure. Observed trends
of each race are described by group-specific state space models, useful to capture
longitudinal dependence across performances of the same athlete. Information on
missing values is included by means of two distinct group dependent processes:
the first one describes the drop-in and drop-out phenomena in the sample; the
second one describes the actual participation in the competitions by the athletes,
as an index of their different attitudes. Our findings suggest that athletes who
are more likely to participate in different type of races have better performances
during the years.

Keywords: Informative missing data; Longitudinal clustering; Sports perfor-
mance analysis.
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1 Introduction

Planning the future career of young athletes is a relevant aspect of the
work of coaches, whose role is to guide athletes during training so that
they can perform at their best in competition and achieve their desired
results. In this context, the identification of possible careers for an ath-
lete, in terms of observed personal performance trajectories over time, is
of paramount importance because it can give indications on the expected
progress of different athletes over the years, thus indicating whether the
training process has been carried out correctly. In this paper, we analyze
a new dataset describing the careers of Italian male middle-distance ath-
letes, born in 1988, with age ranging between 18 and 32 years old, and
focus on clustering of longitudinal data. Observed data are represented in
Figure 1. Clustering of longitudinal data has been extensively explored in
literature (see, Frühwirth-Schnatter, 2011; Bartolucci and Murphy, 2015),
as a tool for identifying different observable scenarios and describing the
heterogeneity present in the data. We extend the matrix-variate state space
models for clustering so that the clustering structure depends both on the
observed trend and on the presence of missing data. Indeed, unlike other
types of athletes and sports, middle distance runners can compete in dif-
ferent distances, i.e. in the 800, 1500 and 5000 meters races, as well as in
other spurious races. The choice of races in which to compete is subjec-
tive and typically associated with personal attitudes, and not all athletes
compete in all type of races. In this way, not only do we observe different
races for each athlete over time, but the absence of a particular race can
be informative on the athletes’ attitudes. Beyond the variability among
subjects related to the type of races performed, there is also variability in
the development of athletes’ careers, related for example to the number of
year spent in career. These aspects are related to drop-in and drop-out phe-
nomena, defined as the events where athletes enter and exit the observed
sample, respectively. In this context, the presence and absence of data is
potentially correlated with the observed performances, a critical aspect in
clustering since neglecting them (or not) may lead to different conclusions
and different clusters as well.

2 The model

Let ypq,t denote the seasonal best performance of race p for athlete q dur-
ing the year t, for p = 1, . . . , P , q = 1, . . . , Q, and t = 1, . . . , T . Suppose
also that the complete set of observations were available, so that each ath-
lete participates in all P races during the years and that no drop-ins or
drop-outs are observed. Assume that athletes are divided into G different
unknown groups according to the evolutionary trajectories during their ca-
reers. Let athlete q belong to group g, then its seasonal best race results
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FIGURE 1. Observed seasonal best performance in 5000, 1500, and 800 meters
race for Q = 369 Italian middle distance runners, born in 1988. Data collection
was done from the annual rankings, which publicly available at www.fidal.it,
the official website of Italian athletics federation.

over time are described by the following dynamic linear model

ypq,t = z⊤p α
(g)
p,t + εpq,t, εpq,t ∼ N1(0, σ

2
p),

α
(g)
p,t+1 = Tpα

(g)
p,t + ξ

(g)
p,t , ξ

(g)
p,t ∼ NFp

(0,Ψp),

where α
(g)
p,1 ∼ NFp

(α̂
(g)
p,1|0,P

(g)
p,1|0), for p = 1, . . . , P , t = 1, . . . , T , and α̂

(g)
p,1|0,

P
(g)
p,1|0 are fixed mean and variance of the latent process at the first time

instant. In the above specification, the row vector z⊤p , which is characterized
by a known structure, links the observation ypq,t to the column vector

α
(g)
p,t , which describes the group-specific dynamics of the p–race for all the

athletes that belong to group g. These dynamics are determined by the state
transition equation, that describes a first-order autoregressive process with
transition matrix Tp, which is race-specific, known, and shared across all
the groups. Moreover, this dependence is not required to be common across
different races, as Tp may differ from Tp′ for any p ̸= p′. The error terms
εpq,1, . . . , εpq,T are assumed to be serially independent and independent

of both the states α
(g)
p,1, . . . ,α

(g)
p,T and the disturbances ξ

(g)
p,1, . . . , ξ

(g)
p,T , for

p = 1, . . . , P and g = 1, . . . , G. Given these assumptions, it is possible
to write the model in a compact matrix-variate state space representation
(see, e.g., Wang and West, 2009).
The model described assumes that all data are observed, i.e., that the ath-
letes run all P races during the years and that drop-ins and drop-outs are
not observed. However, this is not the case for data that describe the career
trajectories of athletes, since the lack of data is part of the career itself. To
include these factors as informative aspects of athletes’ career, we include
two more variables in the model. The variable dpq,t ∈ {0, 1} describes, re-
spectively, the absence or presence of an observations for race p of athlete
q during year t. The variable d⋆q,t represents whether the athlete q is in
career during year t or not. More specifically, d⋆q,t is such that d⋆q,t = 0 if
athlete q has never started the career before t (included), d⋆q,t = 1 if athlete
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q is in career during t, or d⋆q,t = 2 if athlete q has finished the career in t
(included). The variable d⋆q,t is not decreasing in t, and describes the three
possible states of athlete’s career. Moreover, if d⋆q,t ∈ {0, 2}, then dpq,t = 0
with probability 1, for p = 1, . . . , P , meaning that no races are observed
since the athlete is not competing. On the contrary, there might be athletes
such that dpq,t = 0, for p = 1, . . . , P , even if d⋆q,t = 1. This is typical of
athletes who, despite being in a career, decide not to compete during one
specific year, but compete in the following years. Let d⋆

q = (d⋆q,1, . . . , d
⋆
q,T ),

d·q,t = (d1q,t, . . . , dPq,t)
⊤, and Dq =

[
d·q,1 . . . d·q,T

]
. To make the miss-

ing data informative on the clustering structure, we assume that the likeli-
hood associated with them is dependent on the cluster allocation Sq, and
assume

pθ(Dq,d
⋆
q |Sq) =

T∏
t=1

[ P∏
p=1

pθ(dpq,t|d⋆q,t, Sq)

]
pθ(d

⋆
q,t|d⋆q,t−1, Sq),

where pθ(d
⋆
q,1 = 1|d⋆q,0, Sq = g) = π⋆

1g and pθ(d
⋆
q,1 = 0|d⋆q,0, Sq = g) =

1− π⋆
1g, with d⋆q,0 = 0 fixed for q = 1, . . . , Q, as well as pθ(dpq,t = 1|d⋆q,t =

1, Sq = g) = πpg, and pθ(dpq,t = 0|d⋆q,t = 1, Sq = g) = 1− πpg. We adopt a
fully conditionally conjugate Bayesian approach, which allows to derive a
Gibbs sampler for the estimation of the model.

3 Results

Analysis of results based on the posterior distribution can be different and
with various levels of complexity. From a practical point of view, it is inter-
esting to compare distinct groups based on the states describing the per-
formances of distinct athletes, and hence, looking whether different missing
data patterns are effectively associated with better or worse performances.
An example is provided in Figure 2, that shows, in its first line, the per-
formances in the 1500 meters race of three (out of 9) selected groups, and,
in the second line, the performances in the 800 meters race of three other
groups. In the 1500 meters discipline, we note that the groups differ not
only in the level of performance but also with respect to the number of
observations present in each graph, with the third one characterized by
much longer careers. A longer career therefore appears to be effectively
associated with generally better performance over time. In the 800 meters,
on the contrary, differences are more marked especially for the blue group,
which is characterized by worse performances and later entry into compe-
titions. Other interesting findings of our application suggest that athletes
who are more likely to participate in different disciplines rather than one
single discipline have better performances during the years. In conclusion,
our model shows that the presence of different missing data patterns in
the data appears to be effectively associated with better and worse ath-
letes’ performances. On one side, these results highlight the importance of
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FIGURE 2. In the first line, performances on 1500 meters race for three selected
groups. In the second line, performances on 800 meters race for three other groups.
Thicker lines denote posterior medians of the states. Colored bands denote the re-
spective 90% pointwise posterior credible intervals based on quantiles. Observed
data are represented in the background, according to athletes’ MAP cluster al-
locations.

starting careers at young ages. On the other side, they highlight the im-
portance of being able to compete in different disciplines over the years.
This aspect, not only allows to monitor the progress of the athletes, but
also suggests possible strategies of competitions (e.g. competing in differ-
ent type of races) to obtain better results. In this work, the analyses were
obtained using a sample of Italian male athletes. Future research involves
studying female athletes, or athletes from other countries or at the inter-
national level. Beyond that, our approach also fits well with other sports
in which athletes may compete in different disciplines, such as swimming
or track-cycling. From a methodological perspective, further analyses will
investigate in detail the choice of using a fixed group number, rather than
alternative approaches such as the use of sparse finite mixture (Malsiner-
Walli et al., 2016).
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Abstract: Labelled networks are an important class of data, naturally appearing
in applications in science and engineering. A typical inference goal is to determine
how the vertex labels (or features) affect the network’s structure. We introduce a
new generative model, the feature-first block model (FFBM), that facilitates the
use of rich queries on labelled networks. We develop a Bayesian framework and
devise a two-level Markov chain Monte Carlo approach to efficiently sample from
the posterior distribution of the FFBM parameters. This allows us to infer if and
how the observed vertex-features affect macro-structure. We apply the proposed
methods to several real-world networks to extract the most important features
along which the vertices are partitioned. Importantly, the whole feature-space is
used automatically and features can be rank-ordered implicitly by importance.
[The full version of this paper is available on arXiv as [cs.LG] 2105.13762.]

Keywords: Stochastic Block Model; Labelled Networks; Inference.

1 Introduction

Many real-world networks exhibit strong community structure, with most
nodes belonging to densely connected clusters. In this work, we examine
vertex-labelled networks, referring to the labels as features. A typical goal
is to determine whether a given feature impacts graphical structure. An-
swering this requires a random graph model; the standard is the stochastic
block model (SBM), see Peixoto (2017).
Analysing a labelled network with one of the standard SBM variants re-
quires partitioning the graph into blocks grouped by distinct values of the
feature of interest. The associated model can then be used to test for ev-
idence of heterogeneous connectivity between the feature-grouped blocks.
But this approach can only consider disjoint feature sets and the feature-
grouped blocks often provide an unnatural partition.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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We would instead prefer to partition the graph into its most natural blocks
and then find which of the available features – if any – best predict the
resulting partition. Thus motivated, we present a novel framework for mod-
elling labelled networks. This is not the first extension of the SBM to la-
belled networks, e.g. Stanley et al (2019). However, most of the current
approaches are focused on leveraging feature information to partition the
graph more reliably in the presence of noise. We seek instead to develop a
model well suited for inferring how vertex features impact graphical struc-
ture and to report our confidence in those conclusions.

2 Feature-First Block Model

We propose a novel generative model for labelled networks, which we call
the feature-first block model (FFBM), illustrated in Figure 1. Let N denote
the number of vertices, B the number of blocks and D the number of
features associated with each vertex. We write X for the N × D feature
matrix containing the feature vectors {xi}Ni=1 as its rows. For the FFBM,
we start with the feature matrix X and generate a random vector of block
memberships b ∈ [B]N , where we write [K] = {1, 2 . . .K}. For each vertex i,
the block membership bi ∈ [B] is generated based on the feature vector xi,
independently between vertices, so p(b|X, θ) =

∏
i∈[N ] ϕbi(xi; θ).

FIGURE 1. The Feature-First Block Model (FFBM)

Once the block memberships b have been generated, we then draw the adja-
cency matrix of the graph A ∼ DC-SBMMC(b, ψ) from the microcanonical
DC-SBM, Peixoto (2017), with additional parameters ψ. Appropriate priors
are placed on the parameters θ and ψ to complete the Bayesian framework.

3 Inference

Given a labelled network (A,X), we wish to infer if and how the observed
features X impact the graphical structure A. Formally, this means charac-
terising the posterior distribution for θ, p(θ|A,X) ∝ p(θ) · p(A|X, θ). Fol-
lowing standard Bayesian practice, we propose an iterative Markov chain
Monte Carlo (MCMC) approach to obtain samples θ(t) from this posterior.
First we sample b(t) from the block membership posterior, and then use
b(t) to obtain a corresponding sample θ(t),

b(t) ∼ p
(
b|A,X

)
then θ(t) ∼ p

(
θ|X, b(t)

)
. (1)
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Splitting the Markov chain into two levels side-steps the intractable sum-
mation over all latent b ∈ [B]N required to directly compute the likelihood,
p(A|X, θ). The resulting θ(t) samples are asymptotically unbiased in that
the expectation of their distribution converges to the true posterior.

FIGURE 2. θ-sample generation.

Figure 2 shows an overview of the proposed method, with q and α denoting
the Metropolis-Hastings proposal distribution and acceptance probability.
Due to the formulation of the FFBM, evaluating p(b|X) does not depend
on X so we do not need X to sample b. And on the other level, in order to
obtain samples for θ we use only b but not A, as (θ ⊥⊥ A)|b.

4 Experimental results

We apply our proposed methods to a variety of real-world datasets. The
inferred partitions b for all of these are given on Figure 3. To assess model
performance, the average description length per entity (nodes and edges)
S̄e is used to gauge the SBM fit, and the vertex set [N ] is partitioned at
random into training and test sets, G0 and G1, to assess the performance
of the feature-to-block predictor. The average cross-entropy loss over each
set, denoted L̄⋆, is used to gauge the quality of the fit.
For higher-dimensional datasets, we develop a novel dimensionality reduc-
tion method to select only the top D′ features. We then retrain the feature-
block predictor using only the retained feature set, and report the cross-
entropy loss L̄′

⋆ over the training and test sets for the reduced classifier.
Table 1 summarises the results for each experiment. We see that the di-
mensionality reduction procedure brings the training and test losses closer,
indicating that the retained features are indeed well correlated with the
underlying graphical partition and that the approach generalises correctly.

TABLE 1. Results averaged over n = 10 iterations (mean ± std. dev.).
Dataset B D D′ S̄e L̄0 L̄1 c∗ L̄′

0 L̄′
1

Polbooks 3 3 – 2.250± 0.000 0.563± 0.042 0.595± 0.089 – – –
School 10 13 10 1.894± 0.004 0.787± 0.127 0.885± 0.129 1.198± 0.249 0.793± 0.132 0.853± 0.132

FB egonet 10 480 10 1.626± 0.003 1.326± 0.043 1.538± 0.069 0.94± 0.019 1.580± 0.150 1.605± 0.106
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FIGURE 3. Networks laid out and coloured according to inferred block member-
ships. Left to right: Polbooks, Krebs (2004); Primary School, Stehle et al (2011);
Facebook Egonet, Leskovec and Mcauley (2012).

5 Conclusion

The feature-first block model (FFBM) is introduced, as a new generative
model for labelled networks with communities. An efficient MCMC algo-
rithm is developed for sampling from the posterior distribution of the rel-
evant parameters in the FFBM; the main idea is to divide up the graph
into its most natural partition under the associated parameter values, and
then to determine whether the vertex features can accurately explain the
partition. Through applications on empirical network data, this approach is
demonstrated to be effective at extracting and describing the most natural
communities in a labelled network. Nevertheless, it can only currently ex-
plain the structure at the macroscopic scale. Future work will benefit from
extending the FFBM to a further hierarchical model, so that the structure
of the network can be explained at all scales of interest.
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1 Introduction

Fundamental purpose of the European Union Statistics on Income and
Living Conditions (EU-SILC) survey is to map actual life situation within
European households, their social-demographic structure, income differen-
tiation, quality and financial burden of housing. The rotational design of
this still ongoing study replaces a quarter of households each year so that
each household is observed for no more than ni = 4 consecutive years.
Apart from the Equivalised total disposable household income, which is the
key numeric outcome, plenty of other closely related numeric, binary, ordi-
nal or general categorical outcomes are recorded. The observed values may
depend on several potential regressors such as the size of a household, the
household location and its population density, etc., but most importantly
the time. During the follow-up period, the households had to withstand
many unfavourable external conditions in the form of economical crisis and
its consequences. Our task is to differentiate patterns in the evolution of
social-economic indicators. Households intact and still prospering, house-
holds of a steady course or even households negatively impacted by the
crisis are expected to be discovered.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Model

In our previous work (Vávra and Komárek, 2022), we modelled categor-
ical outcomes by thresholding a latent numeric outcome. Here we pro-
pose a modification that utilizes generalized linear mixed-effects models
(GLMM) instead and, moreover, simultaneously estimates the suitable
number of clusters.

2.1 Generalized linear mixed-effects models

Let us denote by Y r
i,j the jth value (j = 1, . . . , ni) of outcome r ∈ {1, . . . , R}

of type t(r) ∈ {N,B,O,C} (numeric, binary, ordinal or general categorical,
respectively) observed within the household i = 1, . . . , n together with a set
of covariates Ci,j including the time ti,j . For each outcome r we construct
a predictor ηri,j consisting of fixed (given by coefficients βr) and random
effects br

i specific to household i.
Suitable distributional family and corresponding GLMM is chosen for each
outcome depending on its type. For numeric outcome Y r

i,j we assume clas-

sical normal linear mixed-effects model : Y r
i,j

∣∣br
i ; Ci,j ∼ N

(
ηri,j , τ

−1
r

)
, where

τr is the precision parameter of the error terms. Logistic regression is
assumed for binary outcomes Y r

i,j ∈ {0, 1}, the probability of success is

parametrized by logit−1
(
ηri,j

)
. Logit function is also used for parametriza-

tion of cumulative probabilities of an ordinal outcome Y r
i,j ∈ {1, . . . ,Kr} in

the following way: pk := P
[
Y r
i,j > k|ηri,j

]
= logit−1(ηri,j − cr,k), where cr is

a set of ordered intercepts for outcome r, t(r) = O. The probability of Yi,j =
k is then just a difference of pk−1 and pk. Note that by this parametrization,
the proportional odds assumption has been employed. However, for general
categorical outcome each category level k ∈ {1, . . . ,Kr} is given a special
predictor ηrk,i,j determined by a different set of fixed effects βr,k. The prob-
ability of attaining level k is then given by a generalization of logit function

often called softmax function: P
[
Y r
i,j = k

∣∣ηr
i,j

]
∝ exp

{
ηrk,i,j

}
, where the

predictor for the last category has to be fixed to 0 for identifiability pur-
poses. Here we limit ourselves with only these four model types, however,
an extension to different distributional families or parametrizations would
be straightforward.
Given random effects and covariates, the one individual observation Y =
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Y r
i,j tied with predictor η = ηri,j contributes to the likelihood by

pt(r) (Y |br
i ; Ci,j) =



(2π)−
1
2 τ

1
2 exp

{
−τ

2
(Y − η)

2
}
, if t(r) = N,[

logit−1 (η)
]Y [

1− logit−1 (η)
]1−Y

, if t(r) = B,

logit−1 (η − cr,Y−1)− logit−1 (η − cr,Y ) , if t(r) = O,

exp {ηY }
Kr∑
k=1

exp {ηk}
, if t(r) = C.

Given the random effects and the covariates, we treat models for different
outcomes as independent of each other. However, real data often exhibit
strong relationships among outcomes, e.g. households of high disposable
income have a higher chance to afford a one week holiday away from home.
Therefore, we gather all random effects br

i , r = 1, . . . , R into a long vector
bi and assume a centred multivariate normal distribution with a completely
general covariance matrix Σ. The associations of the random effects are
transferred to the marginal distribution of the outcomes.

2.2 Model-based clustering

In order to discover potential different patterns of evolution, we have to
assume a certain heterogeneity within the data. We employ a method of
unsupervised clustering called model-based clustering, which creates a mix-
ture of G outlined models differing in the parameter values, e.g. the fixed
effects β(g)

r for outcome r specific to cluster g = 1, . . . , G describe the
specific evolution in time or effect of other covariates of this cluster. Poten-
tially, any unknown parameter (τr, cr, Σ) could be set to be group-specific,
which is denoted by (g) in the superscript.
Let Ui be the unknown latent group allocation indicator with a marginal
distribution P [Ui = g] = wg, where 0 < wg < 1 are unknown probabilities

such that
∑G

g=1 wg = 1. Let fg stand for the pdf for the distribution of all
outcome values Yi within the gth cluster. Then, the pdf of the marginal
distribution of Yi is of the mixture type:

∑G
g=1 wgfg(Yi; Ci). The Bayes

rule yields the probability of belonging to cluster g given the observed
data: P [Ui = g|Yi; Ci] ∝ wgfg(Yi; Ci).
Unfortunately, the evaluation of fg includes integration of the latent ran-
dom effects bi, which is complicated by the different outcome types and the
joint distribution of bi across all of the outcomes. In particular, the con-
tribution of a household i to the likelihood function can be expressed as

Li(θ) =
G∑

g=1

wg

∫ R∏
r=1

ni∏
j=1

pt(r)

(
Y r
i,j

∣∣∣br
i , θ

(g); Ci,j
)
p
(
bi

∣∣∣Σ(g)
)
dbi,
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where θ stands for all unknown parameters, θ(g) for parameter values
within the group g and p(·|·) denotes the pdf of the corresponding con-
ditional probability distribution, where subscript t(r) denotes the distribu-
tional family depending on the type of the outcome r. This integral can be
directly evaluated only for numeric outcomes, t(r) = N,∀r. To elegantly
avoid the integration during the estimation, we switch to the Bayesian
framework with the use of Bayesian data augmentation principle, which
treats latent variables as additional unknown model parameters. This in-
cludes the potentially missing outcome values. The prior distribution in
some sense regularizes the likelihood and removes potential problems with
maximization. Moreover, a suitable choice of the prior distribution over
the marginal allocation probabilities w can solve the problem of apriori
unknown number of mixture components G.

2.3 Prior and posterior distribution

Inspired by the work of Frühwirth-Schnatter and Malsiner-Walli (2019), we
set the Dirichlet prior over w so that sparse finite mixture is induced. We
fix the maximal number of mixture components Gmax. Given the allocations
Ui, we count the current cluster occupancy numbers ng =

∑n
i=1 1(Ui=g),

some of which may eventually be empty. Then, the number of non-empty
clusters G+ := Gmax −

∑Gmax

g=1 1(ng=0) and its posterior is targeted instead.
The Dirichlet prior with low parameter values then encourages G+ < Gmax

with high probability.
Common distributional families are used (to achieve conjugacy) for the
prior distributions of the rest of the unknown parameters. The hyperpa-
rameters have to be set carefully, since empty clusters are described by the
prior only, which may have an impact on the level of sparsity.
We take an MCMC approach for the estimation of the posterior distribu-
tion by sampling a Markov chain from the full-conditioned distributions
(Gibbs sampler), where the problematic full-conditionals are replaced by
Metropolis proposals of multivariate normal steps with suitably chosen co-
variance matrix. In practise, the chain starts with Gmax clusters, some of
which are emptied in time, until the chain settles with some G+ solution.
We also apply the recommended post-sampling procedure for relabelling in
case the label-switching problem occurs.
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FIGURE 1. Evolution in time of a numeric (top) and categorical (bottom) out-

comes grouped into Ĝ+ = 4 colourful clusters (red, yellow, green and blue). The
top plot of Equivalised total disposable income contains estimated median pos-
terior curves. Ratios of observable levels of categorical outcomes (bottom) are
displayed for each cluster and year separately.
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3 Application to the EU-SILC data

We limit the analysis to the data of n = 23 360 households from the Czech
Republic. One outcome per type is taken: Equivalised total disposable in-
come (numeric), Affordability of a one week holiday (binary), Financial
burden of the total housing cost (ordinal) and Do you have a car? (ca-
tegorical). We primarily focus on the evolution in time, hence, a spline
parametrization of the time is considered for each cluster. Additional re-
gressors such as level of urbanization, equivalised household size, the highest
ISCED level attained within the household, etc., are considered to filter out
these potential effects common to all households.
The number of non-empty clusters heavily depends on the choice of group-
specificity of other unknown parameters. Under a common precision pa-
rameter τ for the income, more than 10 clusters remain, some of which
are very scarce and of unique trend combinations. On the other hand, the
choice of group-specific precision τ (g) results in only four groups, where the
inner variance rather than the actual trend is the determining factor for
clustering, see Figure 1. The four discovered groups do not completely fulfil
our prior expectations, yet, each of them could be uniquely characterized:
declining and extremely volatile with outliers (red), poor but steady (yel-
low), prosperous but volatile (green), average and steady majority (blue).

Acknowledgments: This research was supported by the Czech Science
Foundation (GAČR) grant 19-00015S and the Charles University, project
GA UK No. 298120.
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1 Introduction

It is now common for environmental and epidemiological studies to be spatially
varying in addition to being observational. A fundamental task is to estimate the
effect of a treatment variable (or exposure variable) on a response variable. As
an example, Wu et al (2020) noticed that many co-morbidities associated with
COVID-19 had connections to being exposed to higher concentrations of ambient
fine particular matter (PM2.5); see Figure 1. Due to this, they conducted a study
to determine if an increase in PM2.5 resulted in a higher COVID-19 mortality
rate. They found that an increase of 1 µg/m3 in ambient fine particulate matter
(PM2.5) is associated with a 15% increase in the COVID-19 mortality rate.
A key assumption necessary to endow their analysis with a causal interpretation
is that no unmeasured (spatial) confounders have been excluded from the model.
This assumption, generally speaking, is impossible to verify. However, it may be
possible to remove the effects of unmeasured confounders that are spatially struc-
tured under certain assumptions. Guan et al (2020) provided a framework where
this phenomena can be studied. They propose modeling the exposure and unmea-
sured confounder in the spectral domain with a joint Gaussian which permitted
deriving the coherence function and determine the assumptions necessary to es-
tablish a causal interpretation of exposure. Guan et al (2020) focus on the Leroux
parametrization of a CAR model. In this work we explore the same idea but on

This paper was published as a part of the proceedings of the 36th International Work-
shop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July 2022. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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FIGURE 1. PM2.5 exposure and COVID-19 mortality by US county: (right) Av-
erage PM2.5 (µg/m3) over 2000-2016 and (left) log COVID-19 mortality rate (i.e.,
log(deaths/population)) through May 12, 2020 (counties with no deaths are shaded gray).

a much broader scale by considering two other popular and commonly employed
areal data spatial models. Interestingly, we show that the ability to recover a causal
estimate of exposure depends on the model selected to fit the data.

2 Eigendecomposed CAR models

Let Y = (Y1, ..., Yn)
T, X = (X1, ..., Xn)

T and Z = (Z1, ..., Zn)
T be, re-

spectively, the response, the exposure and the missing confounder at spatial units
1, . . . , n. We use the generic spatial regression model

Y = β01+ βxX+ βzZ+ ε. (1)

If Z is observed and model (1) correct, then it is straight forward to estimate the
causal effect βx. In most studies Z is unobserved. Because of this, a reasonable
approach would be to model Z and X jointly. We do this following the approach
in Guan et al (2020) using spatial processes on the spectral domain. To illustrate
the spectral framework consider that both X and Z in model (1) follow an intrin-
sic CAR model, in the case of Z

Z ∼ Normal
(
0, σ2

zΓW
−ΓT

)
(2)

where ΓWΓT = R is the spectral decomposition of the structure matrix R,
specifying adjacency relationships between regions. Matrix Γ contains eigenvec-
tors and W is a diagonal eigenvalue matrix with kth diagonal element ωk ≥ 0,
ordered so that ω1 ≤ ... ≤ ωn. Note in model (2), V(Z) = σ2

zR
−, where

R− = ΓW−ΓT and W− has diagonal elements {1/ω1, . . . , 1/ωn}.
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We can project X and Z into the spectral domain by applying the transform
X∗ = ΓTX and Z∗ = ΓTZ. We assume the pairs (X∗

k , Z
∗
k) are independent

across k, and Gaussian with mean zero and covariance

cov
(
X∗

k

Z∗
k

)
=

(
σ2
xfx(ωk) ρσxσzfxz(ωk)

ρσxσzfxz(ωk) σ2
zfz(ωk)

)
, (3)

where σ2
x and σ2

z are variance parameters, fx(ωk) > 0 and fz(ωk) > 0 are vari-
ance functions that determine the covariance of X and Z, respectively, and scalar
ρ ∈ [−1, 1] and cross spectral density fxz(ωk) determine the dependence between
X and Z. Note, under the intrinsic CAR model assumption (2), fj(ωk) = ω−1

k ,
j ∈ {x, z}.
Finally, by marginalizing the response Y ∗ = ΓTY over the unknown Z∗ we get

Y ∗
k | X∗

k ∼ Normal
(
β0Mk + βxX

∗
k + βzα(ωk)X

∗
k , τ

2(ωk) + σ2
)
,∀k (4)

where Mk is the sum of the kth column of Γ. According to the type of CAR
model that we start from we have different expressions for the terms α(ωk) and
τ2(ωk) in (4). However, in general it can be shown that the regression coefficient
for X∗ is a function of the spatial resolution ω, namely β(ωk) = βx+βzα(ωk) ̸=
βx. Thus, the size of spatial confounding bias is driven by α(ωk). In particular,

α(ωk) = γ(ωk)
σz

√
fz(ωk)

σx

√
fx(ωk)

, where γ(ωk) = ρ fxz(ωk)√
fx(ωk)fz(ωk)

is the coherence

function, which determines the correlations between the two spectral processes.
Given that α(ω) is not known in practice, the bias cannot in general be identified
and removed. Guan et al (2020) propose an identification strategy based on two
assumptions:

1. γ(ωk) = ρ (parsimonious coherence model);

2. α(ωk) → 0 for large ωk, i.e. the cross-spectral density decreases to zero
faster than the spectral density of X , implying a decrease in confound-
ing in higher frequency or local variations (unconfoundedness at high-
frequencies).

While assumption (1) is relevant to study the impact of the properties such as
smoothness of the spatial processes on the confounding, assumption (2) leads to
employing spline based methods to adjust for spatial confounding. Resolution
varying coefficient models, where β(ω) is modelled as a linear combination of B-
spline basis functions defined over the eigenvalue domain ω, have been proposed
in Guan et al (2020). The idea is that under assumption (2) of unconfoundedness
at high-frequencies, the fitted value β̂(ωn), where ωn is the largest eigenvalue,
can be assumed as an unbiased estimate of the exposure effect βx in (1).
Interestingly, for an intrinsic CAR model it turns out that α(ωk) = ρσz/σx which
is constant as a function of ωk. Notice then that it can never go to zero at high-
frequencies, which means that this model cannot provide adjustment for spatial
confounding under assumption (2).
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2.1 Besag York and Mollié model

Let’s consider other CAR models that are based on a mix of a spatially structured
and an unstructured component, known as BYM (Besag York and Mollié, 1991).
Dean et al (2001) and Leroux et al (2000) proposed different types of BYM mod-
els. Under Dean parametrization (we show the formula for Z only)

Var(Z) = σ2
zΓ

[
(1− λz)In + λzW

−]ΓT. (5)

The parameter λz in (5) indicates the proportion of variance attributed to spatially
structured random effects.
Under Leroux, the covariance is Var(Z) = σ2

zΓ [(1− λz)In + λzW ]
−1

ΓT,
where λz is simply a spatial smoothing parameter with no more interpretation in
terms of explained variance. The conditional model in (4) takes a different form
according to the kind of BYM considered (assuming we have defined the same
BYM for both X and Z). It can be shown that under the parsimonious coherence
model (assumption (1)), for Dean model

α(ωk)D = ρ
σz

σx

√
1− λz + λz/ωk

1− λx + λx/ωk
,

while for Leroux

α(ωk)L = ρ
σz

σx

√
1− λx + λxωk

1− λz + λzωk
.

We can notice that if λz > λx then α(ωk) decreases as ωk gets larger. There-
fore, reducing bias due to spatial confounding is possible under assumption (2) of
unconfoundedness at high-frequencies both using Dean and Leroux BYM mod-
els, but only when Z is smoother than X . Interestingly, preliminary investigation
suggests that α(ω)D > α(ω)L when λz > 1− λx.

3 Discussion

Modelling exposure and missing confounder in the spectral domain allows us to
study the extent to which spatial confounding bias can be adjusted under CAR
models. By looking at the eigendecomposed version of each CAR, we were able
to highlight how the smoothness properties of both exposure and missing con-
founder have an impact in reducing spatial confounding bias. Further, the BYM
permits recovering the causal estimate βx under the spectral framework by Guan
et al (2020) (assumptions (1) and (2)) when λz > λx, while it is not clear that the
intrinsic CAR provides any adjustment.
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Abstract: Unraveling interactions between microbial communities is of vital im-
portance in understanding how microbes influence human health. Rich sources of
microbiome data have been generated by the latest sequencing experiments, mea-
suring microbial abundances under a variety of environmental conditions, such
as at different body sites or across different time points. In this paper, we model
the complexity of these data, and of the underlying dependency structure, via a
Gaussian copula graphical model. Heterogeneity in the data is captured both at
the individual microbial level, via marginal distributions that are linked paramet-
rically with external covariates, and at the dependency level, with a hierarchical
prior on the graph. We develop an efficient Bayesian structural learning proce-
dure for parameter inference and, inspired by the microbiome application, we
propose a latent space network prior for capturing structural relatedness across
multiple environments.

Keywords: Microbiome; Copula graphical models; Bayesian structural learning.

1 Microbiome data: sparse, discrete, compositional,
heterogeneous

Interactions between microbes are fundamental in shaping the structure
and functioning of the human microbiota, and their malfunctioning has
been linked to a number of medical conditions. Learning these interactions
is thus of great interest and is made possible by a rich source of microbiome
data that has been recently generated and made available from large con-
sortia, such as the data from the Human Microbiome Project (HMP Con-
sortium, 2012) that we use in this paper.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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In particular, we consider the abundances of 87 Operating Taxonomic Units
(OTUs) - these are the higher level microbial communities in which mi-
crobes are clustered - measured in 4503 micriobiomes from healthy indi-
viduals and across 13 different body sites. Graphical modelling approaches
for network inference from microbiome data are made difficult by the com-
plexity of the data. Indeed, some typical features are:

� High-dimensionality: the raw data contains the abundances of 10730
OTUs, though many of these are extremely rare

� Discreteness: data generated from 16S variable region V3-5 sequenc-
ing technologies are in the form of counts

� Zero inflation: a high percentage of zeros. As an indication, Figure 1
(left) is a boxplot of the percentage of zeros for each OTU, split by
body sites.
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FIGURE 1. Percentages of zeros across the 87 OTUs split by body sites

� Compositionality: sequencing depths change significantly between
samples due to experimental effects.

2 Hierarchical graphical model

In this section we define a hierarchical graphical model for network inference
from heterogeneous data. Let Y = (Y1, . . . , Yp) be the random vector of
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interest, e.g. the abundances of p OTUs. We assume Y to be distributed
according to some graphical model (GM),

Y|G ∼ GM(G),

relative to some conditional independence graph G, which itself is dis-
tributed according to some prior model,

G ∼ P (G;θ),

for some vector of parameters θ. Depending on the context of interest,
there are various inference tasks that could be considered. For example,
given some data on Y, one can learn about the drivers of the conditional
independence graph, θ|data. Or given some data onY, one can use the prior
to capture particular structures in the underlying conditional independence
graph. For example,

1. If the data is a time-series on Y, then consider a temporal prior on
the graph, Gt|Gt−1,θ.

2. If the data concerns a number of related conditions on Y, consider
priors that capture relatedness of the conditions.

The type of graphical model and the type of hierarchical prior depend
on the situation under consideration. As for the graphical model, we are
particularly interested in the Gaussian copula graphical model, due to its
easy mathematical formulation and its high applicable format, particularly
for data that are not Gaussian such as the count microbiome data. Thus,
we consider:

P (Y1 ≤ y1, . . . , Yp ≤ yp) = Φp(Φ
−1(F1(y1)), . . . ,Φ

−1(Fp(yp))|R),

where Φp is the cumulative distribution function of a p-dimensional mul-
tivariate normal with a zero mean vector and correlation matrix R, while
Φ is the standard univariate normal distribution function. Here, the de-
pendency structure is captured by the inverse of the correlation matrix
K = R−1, typically called the precision or concentration matrix. Indeed,
the zero patterns in this matrix define the conditional independence graph
in the latent Gaussian space, following from the theory of Gaussian graph-
ical models (Lauritzen, 1996). As for the hierarchical prior, we consider a
latent space network model, i.e. G ∼ LSM(z) for some vector of latent
variables z. Inspired by the microbiome application, we define this model
with the aim of capturing relatedness between multiple environments, as
we explain in the next section.

3 Gaussian copula model for microbiome data

Microbiome data are heterogenous in many ways. For the data that we con-
sider, two external covariates are of interest and may help in capturing this
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heterogeneity. The first one is the library size. This is a normalizing factor
that accounts for the compositionality of the data and that is typically esti-
mated (offline), for a given sample, by the geometric mean of pairwise ratios
of OTU abundances of that sample with all other samples (Cougoul et al,
2019). The second one contains the information about the body site where
the biological sample was collected. This results in a categorical variable
with 13 levels. The method that we propose can account for the heterogene-
ity in the data in two ways. Firstly, by linking the marginal distributions
Fj to the covariates, and secondly, by allowing the dependency structure
K to depend on the covariates.
As for the marginals, we adopt discrete Weibull (DW) regressions, i.e, we
assume that

Fj(yj |X = x) = 1− qj(x)
(yj+1)βj(x)

, for yj = 0, 1, . . . ,

with

log
( qj(x)

1− qj(x)

)
= xtθj , log(βj(x)) = xtγj ,

where θj and γj denote the regression coefficients linking the Yj marginal
component of the model to the external covariates x. As in Vinciotti et al
(2022), we find that DW fits significantly better than the commonly used
negative Binomial distribution also on these data. For example, Figure 2
shows the fitting of a DW regression model with library size and body
site used as covariates, for each OTU. For both distributions, we consider
the addition of a zero-inflated component, via a constant zero-inflation
parameter, if it produces a smaller BIC compared to the non-zero inflated
version of the model.
The expectation is that the underlying network may vary across the differ-
ent body sites, possibly with a high similarity between the networks among
the different conditions. For this reason, a second level of heterogeneity is
introduced by setting a latent space prior on the graph. This will capture
the tendency of two nodes to be connected in a particular condition, medi-
ated by the vicinity of that condition with other conditions. In particular,
we consider the following latent space model

P (Gijk = 1) = Φ
(
ztizj

∑
k ̸=k′

ctkck′

)
, (1)

where Gijk = 1 denotes the presence of an edge between node Yi and node
Yj in body site k, z1, . . . , zp ∈ R2 are the latent space variables for each
node and c1, . . . , cB ∈ R2 the latent space variables for each condition. In
both cases, we opt for a 2D-latent space.
We have developed an efficient Bayesian inferential procedure, that consists
of the following steps:

1. Fitting of marginal regression models, with OTU count abundances
as response variable and library size as covariate. The fitted DW
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FIGURE 2. Left: Difference of BIC between negative Binomial and discrete
Weibull marginals. Right: Comparison of empirical cdf, fitted DW and NB
marginals for the abundance of OTU 341460 within the stool body site (aver-
aged across the normalizing factor).

marginals define the regions for sampling the latent Wj where the
Gaussian graphical model resides:

DF (y) =
{
w ∈ Rn×p : Φ−1

(
F̂j(yij − 1)

)
< wij < Φ−1

(
F̂j(yij)

)}
2. Given the current graph G, the latent space model (z, c) is fitted via

a Bayesian probit Gibbs sampling, returning updated posterior graph
probabilities that are used as prior for the next step

3. Given the sampled w and the latent variables, the edges are inde-
pendent. We make use of this in the Bayesian structural learning
procedure for sampling the next graph G, using the efficient search
algorithm of Mohammadi and Wit (2015).

Iterating step 2 and 3 provides samples from the posterior distribution.

4 Simulation

We conclude with a simulation study showing the potential of the proposed
method. We simulate data with B = 15 conditions and p = 20 variables.
The simulation of the data involves the following steps:

1. Setting the latent node variables z, by taking a sample from indepen-
dent standard normals. For the latent condition variables c, we draw
these in three groups of five from normal distributions, with mean
(-1,-2), (0,0) and (2,2), respectively, and standard deviations 0.2. In
this way, we create three groups of similar conditions.
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2. Fitting a probit model to calculate the edge probabilities for each
condition given z and c, and using these probabilities to sample a
graph G for each condition via independent Bernoulli draws

3. Sampling a precision matrix K associated to the graph in each condi-
tion via a G-Wishart distribution, K ∼ WG(3, Ip), and thus sampling
multivariate Gaussian data of size n = 100 for each condition.

Figure 3 shows the results of the simulation after 100k MCMC iterations.
The left plot shows how the posterior edge probabilities, either estimated
from the MCMC chain of graphs or from the estimated latent space (eq.
1), are quite close to the true ones used to simulate the graph. The right
plot shows the estimated latent variables of the conditions (ck), with the
three known groups of conditions represented by the three different colours
and only partly recovered.
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FIGURE 3. Results of the simulation study. Left: Posterior edge probabilities
compared with true probabilities. Right: Posterior latent variables for the 15
conditions (ck) coloured according to the three known groups.
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Abstract: The quality-adjusted life-year (QALY) is a summary measure used
to evaluate the effectiveness of medical treatments in terms of both quality and
length of life. One method used to estimate QALYs is the area under the time-
utility curve (AUC). However, this approach may induce bias, due to its inability
to capture the dependency between the quality of life measures and the survival
time. A simulation study is conducted to assess the bias induced when estimating
QALYs using the AUC method, using a terminal decline data pattern including
censored individuals and missing responses.

Keywords: Quality-adjusted life-years; Joint longitudinal-survival models.

1 Introduction

To allocate healthcare resources effectively, the financial cost and health
outcomes associated with an intervention must be evaluated. Cost-
effectiveness analyses should use outcomes which incorporate the impact
of the treatment on both the length of life and health-related quality of
life (HQoL). The quality-adjusted life-year (QALY) is one such summary
measure; one QALY is equivalent to one year of life in perfect health.
A patient’s HQoL can be assigned to a health state, with a utility value to
indicate its desirability; usually between 0 = Death and 1 = Perfect health.
QALYs are calculated as the product of the time spent in a HQoL state
and its corresponding utility value.
QALYs can be estimated using an area under the curve (AUC) method,
where the longitudinal HQoL data points are linearly interpolated between
observation times, with the value 0 taken after the time of death. However,

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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summary measures such as the AUC may result in biased estimates, espe-
cially in the presence of missing data (Bell et al., 2014). The AUC method
does not take into account the dependence between the HQoL observations
and the survival process, which may be one cause of bias.
In our previous study (Welsh et al., 2020), we assessed the bias induced
when using the AUC approach to estimate QALYs for subjects with linear
HQoL responses and dependent survival data. The QALY estimates for the
random intercept (RI) and random intercept random slope (RIRS) HQoL
models were slightly biased when data was complete, but when including
censoring or missing responses the bias increased significantly.
Building upon our previous results, we aim to determine under which cir-
cumstances the AUC approach for estimating QALYs can be biased when
subjects’ survival is incorporated into a more complex piecewise linear
HQoL model. A simulation study is conducted on terminal decline lon-
gitudinal HQoL data with varying censoring and missingness mechanisms.

2 Simulation Study

2.1 Methodology

For each study parameter set, 1000 dependent HQoL and survival datasets
were simulated. The data was generated for n = 100 subjects per iteration,
with longitudinal HQoL responses denoted by Yij , where i = 1, . . . , n and
j = 0, 1, . . . , 10 are the subject and time indices, respectively.
The data was simulated using the joint longitudinal-survival model frame-
work introduced by Wulfsohn and Tsiatis (1997). It incorporates a linear
mixed effects model and a Cox proportional hazards model, as shown:

Yij = (β0 + ν0i) + (β1 + ν1i)tj + ϵij , (1)

hi(t ; νi) = h0(t) exp(γ0(β0 + ν0i) + γ1(β1 + ν1i)) . (2)

In Equation 1, β and ν are the fixed effects and subject-specific random
effects, respectively, and ϵij is an independent error term. In Equation 2,
h0(t) is the baseline hazard function, and γ are the dependence parameters
such that each subject’s event time is affected by their personal HQoL
intercept and slope values.
To simulate data with a terminal decline pattern, this framework was ap-
plied multiple times. Firstly, the pre-progression longitudinal observations
were generated using Equation 1, and the subject-specific intercepts and
slopes were used in Equation 2 to simulate progression and initial survival
times. If the survival time was less than the progression time for a subject,
the subject was deemed to have died before progressing to terminal decline
and their survival time was recorded. For the remaining subjects a post-
progression slope, dependent on their progression time, and a final survival
time, dependent on said post-progression slope, were then generated. The
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final survival times were then recorded as event times, and the longitudinal
HQoL data was adjusted to reflect the post-progression slope.
The pre-progression HQoL and survival models and the progression model
retained the same parameters throughout the study. Two post-progression
HQoL and survival models were used: a “fast decline” and a “slow decline”
model, which allowed the average number of terminal decline HQoL obser-
vations to vary. Within these models, only the post-progression dependence
was varied, to create independent, “weak” dependence, or “strong” depen-
dence. The parameter choices used are shown in Table 1.

Variable Value(s)/Distribution

Pre-Prog. HQoL fixed effects (0.8, -0.01)

HQoL random effects MVN2 (0,Σ)
σ0 = 0.05, σ1 = 0.001, ρ = 0.2

Error N(0, 0.012)

Baseline hazard Weib(1.2, 24.28)

Dependence (0.2, -1)

Prog. Baseline hazard Weib(1.2, 6.38)
Dependence (0.02, -1)

SD FD
Post-Prog. HQoL fixed effect -0.05 -0.11

HQoL random effect N(0, 0.0052) N(0, 0.0112)
Dependence {0, -2.5, -5} {0, -0.55, -1.1}
Baseline hazard Weib(0.75, 3.36) Weib(0.65, 0.73)

TABLE 1. The variables used in the terminal decline HQoL model. Prog. =
Progression. SD = slow decline and FD = fast decline.

Three censoring mechanisms were considered in the study: uniform, early
and late, with 34%, 56% and 25% of subjects censored, respectively.
The impact of missing HQoL data was also considered. Response missing-
ness was either random or dependent on the value of the previous HQoL
observation, and thus followed a missing completely at random (MCAR)
or missing at random (MAR) data pattern, respectively. Both patterns re-
sulted in 20% missing observations. Imputation through last observation
carried forward (LOCF), and no imputation were considered to handle
missing responses.
We estimated the QALYs gained using the method developed by Glasziou
et al. (1998). The mean QALY restricted to time L is defined as

QALYL =

∫ L

0

P (t)Q(t) dt ,

where P (t) is the proportion of subjects alive at time t, and Q(t) is the
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mean HQoL of those subjects at time t. The Kaplan-Meier estimator is
used to approximate P (t); Q(t) is estimated by interpolating the HQoL for
each individual and combining to yield a group mean function.
To estimate Q(t), longitudinal responses for each subject are required at
all observation times and at distinct censoring and survival times up to
and including their own event time. For those individuals who experienced
the event, three methods were considered to estimate the HQoL at their
recorded survival time: LOCF, extrapolation based on a linear regression
model, and linear interpolation between the last observation and 0. Each
censored subject required a response at time max(t) = 10; this response
was estimated for the individual using either LOCF, or extrapolation based
on a linear mixed effects model. From this point, responses could be linearly
interpolated for each subject at all times necessary.

2.2 Study Results

The study was completed using four scenarios of increasing complexity:
complete uncensored data; complete censored data; uncensored data with
missing responses; censored data with missing responses. For comparability
the results are reported as proportional bias, equal to the difference of the
model and population QALYs divided by the population QALY.
Due to the method of estimating the population QALY, using interpola-
tion to 0 to estimate death time observations consistently lead to a lower
proportional bias than using LOCF or extrapolation at death time when
varying any other data or QALY estimation model choices. For the slow
decline data, this resulted in QALY underestimates.
Data with fast post-progression decline resulted in a higher estimate of
QALYs than for the slow decline data, across all other data and model
variables. When combined with LOCF or extrapolation to estimate death
time observations, this resulted in a large overestimate. However, the me-
dian proportional bias when interpolation to 0 was used at death time was
close to 0; the true HQoL data may not have been modelled accurately,
but the QALY under- and over-estimation compensate for one another.
Boxplots of the proportional bias for the complete data with uniform cen-
soring are shown in Figure 1; there was no significant difference in results
between the uniform, early, and late censoring patterns. The method used
to estimate the HQoL at max(t) for censored subjects has very little impact
on the bias induced, across both post-progression dependence parameter
choice and post-progression slope.
Boxplots of the proportional bias for the uncensored data with MCAR
responses are shown in Figure 2; there was no significant difference in results
between the MCAR and MAR response patterns. The effect of the missing
response imputation method on the proportional bias induced is noticeable:
the bias is greater when LOCF is used to impute missing observations, with
median differences ranging from 0.0034 to 0.0280.
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3 Discussion and Future Work

Combining the current study and that presented in Welsh et al. (2020), we
have assessed the bias induced by the AUC method for estimating QALYs
when using three data patterns for the longitudinal HQoL responses: RI,
RIRS, and terminal decline. To expand fully upon the study by Bell et al.
(2014), there are two data patterns remaining to be simulated: a plateau
and a temporary decline. When completed, we will have a better under-
standing of where current QALY estimation methods using the AUC may
be lacking when used with piecewise linear HQoL data models.
One approach proposed as an alternative to AUC for the estimation of
QALYs is joint longitudinal-survival modelling (Rizopoulos, 2012). By fit-
ting a joint model to the data, QALYs can be estimated by integrating the
model over the survival times. Li et al. (2013) proposed a joint model, which
makes use of a “reverse” time scale, and applied it to QALY estimation.
In our future work, we aim to investigate the potential benefits of using joint
modelling approaches, rather than the AUC method, to estimate QALYs
from dependent longitudinal HQoL and survival data.

Acknowledgments: Special thanks to the Economic and Social Research
Council (ESRC) for their financial support of this project [ES/P000665/1].
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Abstract: Selection of relevant fixed and random effects without prior choices
made from possibly insufficient theory is important in mixed models. Inference
with current boosting techniques suffers from biased estimates of random effects
and the inflexibility of random effects selection. This paper proposes a new infer-
ence method “BayesBoost” combining Bayesian methods and gradient boosting
which performs estimation and selection of fixed and random effects in mixed
models simultaneously. The method introduces a novel selection strategy for ran-
dom effects, which allows for computationally fast selection of random slopes
even in high-dimensional data structures. Additionally, the new method not only
overcomes the shortcomings of Bayesian inference in giving precise and unam-
biguous guidelines for the selection of covariates by benefiting from boosting
techniques, but also provides Bayesian ways to construct estimators for the pre-
cision of parameters such as variance components or credible intervals, which are
not available in conventional boosting frameworks. The effectiveness of the new
approach can be observed via simulation and in a real world application.

Keywords: Bayesian inference; Boosting; Linear mixed models; Probing; Vari-
able selection.

1 Introduction

Linear mixed models (LMMs) are widely used in longitudinal data analysis
as they incorporate random effects to deal with group-specific heterogene-
ity. Bayesian statistics can be used to make inference for LMMs, but it lacks
unambiguous ways to perform variable selection. The model technique,

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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boosting and especially componentwise gradient boosting is famous for the
straightforward variable selection procedure. But the outcomes brought by
boosting are solely estimation points and standard parametric hypothesis
test is impossible without bootstrap or other resampling techniques.
We therefore propose a novel inference method combining Bayesian infer-
ence and boosting technique, which benefits from the shrinkage and vari-
able selection properties of boosting and from the uncertainty estimates of
Bayesian inference.

2 Methods

2.1 Model specification

For clusters or individuals i = 1, . . . ,m with n =
∑m

i=1 ni, where ni denotes
the replicates of the i-th individual, consider the linear mixed model

y = Xβ +Zγ + ϵ

and its predictor y = η =
∑p

k=1 ηk, with ηk = Xkβk + Zkγk, where X
and Z are n × (p + 1)- and n × (q + 1)-dimensional design matrices, β
is a vector of fixed effects with intercept, γ is a vector of cluster-specific
random effects with random intercept and ϵ is a vector of errors.
We assume the independency between γ and ε with positive definite covari-
ance matrices. The covariance matrices G and R are block-diagonal with
R = blockdiag(σ2Σn1

, · · · , σ2Σnm
), G = blockdiag(Q, · · · ,Q), where

γi ∼ N(0,Q) with (1 + q) × (1 + q)-covariance matrix Q. For i.i.d. er-
rors, R simplifies to R = σ2I.

2.2 Bayesian boosting inference method

The additive predictor contains the fixed and random parts, and each part
can be estimated separately by treating the others as an offset. Specifically,
the first step is to estimate fixed effects following a componentwise gradient
boosting routine, and the second step is to make Bayesian inference by
setting the estimated fixed effects as offsets.
In componentwise gradient boosting, the negative gradient vector with a
loss in boosting iteration s is fitted by each base-learner h(Xk) for k =
1, . . . , p. Select the best-fitting k∗-th base-learner based on their contribute

to the model and update fixed effects β̂
[s]

= β̂
[s−1]

+νβ̂
[s]

k∗ , where ν denotes
a step-length or learning rate.
After obtaining the estimated fixed effects, the full Bayesian inference for
the parameters of interest is based on the posterior distribution for the
parameters of interest is based on the posterior distribution

p(γ,G,R|ỹ) ∝ p(ỹ|γ,G,R)p(γ|G)p(G)p(R),
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with ỹ = y − Xβ̂
[s]

treating fixed effects as an offset term, and γ|G, R
and G are assumed to be independent. In general, it cannot be displayed
in a closed form, such that the full Bayesian inference is usually conducted
through MCMC simulation.
Usually, we set a Gaussian prior for the random effects, the full conditional
distribution is then a Gaussian N(µγ ,Σγ) with parameters

Σγ = (ZTR−1Z +G−1)−1, µγ = Σγ

(
ZTR−1

(
y −Xβ̂

[s]
))

.

The covariance matrix R is dominated by σ2, and a weakly informative
inverse gamma prior σ2 ∼ IG(a, b) with small a and b is commonly pro-
posed. The full conditional density of σ2 is thus an inverse gamma IG(ã, b̃)
with

ã = a+
n

2
, b̃ = b+

1

2

(
y −Xβ̂

[s]
−Zγ

)T (
y −Xβ̂

[s]
−Zγ

)
.

Analogously, we assume an inverse Wishart prior IW (v0,Λ0) for the in-
dividual covariance matrix Q and get the posterior distribution, which is
again an inverse Wishart with

v = v0 +m, Λ = Λ0 + γTγ.

Bayesian inference for these unknown parameters are thus made according
to the MCMC samples drawn from the full conditional distributions.

2.3 Random effects selection and early stopping

The componentwise gradient boosting routine discussed above contains al-
ready the fixed effects selection procedure, i.e. select the best-fitting k∗-th
covariate according to their improvement to the model. Moreover, we can
benefit from the selected covariate and make the random effects selection
possible by comparing the model improvement of the fixed effect and that
of the random effect of the selected k∗-th covariate. Note that the random
effects structure as well as their corresponding design matrix Z should re-
constructed by considering the random effects candidates. Accounting for
the computing efficiency, we assume that only the variables that already
have fixed effects can have random effects. Therefore, the new random
effects structure is constructed by taking the best-fitting variable into ac-
count, whose random effect, however, is not selected into the model.
Due to the stochasticity of MCMC simulation, the common information
criterion is not suitable for determining the stopping iteration. We suggest
to use probing to prevent overfitting, the main idea of which is adding arti-
ficial non-informative variables to the data to benefit from the presence of
variables that are known to be independent from the outcome. Practically,
the algorithm stops when any of these permuted non-informative variables
selected into the model.
The proposed algorithm is shown below:
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Algorithm 1 Bayesian Boosting for Linear Mixed Models

1: Initialization
2: for Boosting iterations s = 1 to mstop do

3: Compute the negative gradients u[s] = ∂
∂ηρ(y,η)

∣∣∣
η=η̂[s−1](X)

4: Fit the negative gradient vector u[s] separately to every base-learner

ĥ
[s]
k (xk) for k = 1, . . . , p, and in linear case ĥ

[s]
k (xk) = Xkβk

5: Select the component k∗ that best fits the negative gradient vector

6: Update fixed effects β̂
[s]

= β̂
[s−1]

+ νβ̂
[s]

k∗

7: for MCMC iteration t = 1 to T do
8: Draw samples for the random effect γ(t), variance σ2(t) and covari-

ance Q(t)

9: end for
10: Compute posterior modes as estimates
11: if MSEk∗,random < MSEk∗,fixed then
12: Keep the random effect γk∗

13: end if
14: end for

3 Simulation & Results

Since no other approaches can perform both random effect selection and
uncertainty estimation simultaneously, the effectiveness of our proposed
method is showed in three simulations. The basic specification for all three
simulations is a random effect model

yi = 1 + 2xi1 + 4xi2 + 3xi3 + 5xi4 + γi0 + γi1xi3 + γi2xi4 + εi,

with (γi0,γi1,γi2) ∼ N(0,Q) where

Q =

τ2 τ∗ τ∗

τ∗ τ2 τ∗

τ∗ τ∗ τ2

 .

1. Estimation accuracy: By comparing to the gradient boosting method
for LMMs (grbLMM), we see no obvious differences in estimation ac-
curacy but large improvement in false-positives of fixed effects, see
Table 1, while the improvement can partially be granted to the usage
of probing.

2. Random effects selection: Since grbLMM cannot perform random se-
lection, we evaluate our method separately to see the performance
of estimation and find that there exists no obvious decrease in esti-
mation accuracy, since very low false-positives of random effects are
observed and there is no occurrence of false-negatives, see Figure 1.
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TABLE 1. Mean value of 100 simulation runs with respect to each model evalu-
ation metric between grbLMM and BayesBoost in the random slope setup.

τ p
grbLMM BayesBoost

MSEβ MSEQ MSEσ2 MSEγ FP MSEβ MSEQ MSEσ2 MSEγ FP

0.4

10 0.020 0.013 0.002 4.482 0.46 0.026 0.010 <.001 3.529 0.10
25 0.022 0.012 0.003 4.530 0.27 0.029 0.010 <.001 3.545 0.04
50 0.023 0.012 0.003 4.551 0.18 0.030 0.011 <.001 3.588 0.02
100 0.025 0.012 0.003 4.536 0.10 0.031 0.011 <.001 3.644 0.01
500 0.027 0.011 0.003 4.453 0.03 0.040 0.010 <.001 3.660 <.01

0.8

10 0.072 0.124 0.002 6.923 0.44 0.083 0.133 <.001 6.332 0.11
25 0.073 0.121 0.003 7.015 0.28 0.087 0.136 <.001 6.482 0.04
50 0.074 0.119 0.003 6.956 0.17 0.087 0.134 <.001 6.620 0.02
100 0.078 0.094 0.003 7.060 0.11 0.085 0.118 <.001 6.635 0.01
500 0.082 0.124 0.003 6.953 0.04 0.100 0.139 <.001 6.832 <.01

1.6

10 0.280 1.829 0.002 16.970 0.41 0.321 2.053 <.001 15.669 0.09
25 0.277 1.808 0.002 16.605 0.29 0.316 2.007 <.001 15.940 0.04
50 0.294 1.435 0.002 17.124 0.19 0.302 1.796 <.001 15.950 0.02
100 0.299 1.852 0.003 16.682 0.14 0.310 1.931 <.001 15.006 0.01
500 0.320 1.804 0.003 17.658 0.04 0.361 1.773 <.001 17.280 <.01
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FIGURE 1. Boxplot of each model evaluation metric estimated by BayesBoost
summarizing the outcomes of 100 simulation runs for the random slope setup
with τ = 0.8 and p = 50.

3. Performance of uncertainty estimation: Since the outcomes provided
by boosting approaches contain no uncertainty information, we com-
pare our method to BayesX. According to the results, no obvious
differences in the uncertainty estimation for random effects are ob-
served, see Figure 2. This indicates the good performance of the pro-
posed algorithm in uncertainties.

We also apply our method to a real-world data [Schelldorfer et al. 2011],
the riboflavin data, and find for the first time, that the gene YXLD-at has
not only fixed effect, but also informative random effect.

4 Conclusion

In the proposed algorithm, uncertainty estimation for random effects is
possible inside the boosting framework due to the usage of Bayesian infer-
ence and the selection ability of current boosting approaches is extended to
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FIGURE 2. Coverage probabilities of the 80%- and 95%-intervals of each random
effect in 100 simulation runs for both by BayesBoost and BayesX. For each run,
the coverage probability summarizes the percentage of true effects covered by the
corresponding interval. The dark and light grey bars in each simulation indicate
the 80%- and 95%-interval respectively. The overall coverage rate among all 100
runs are labeled with the corresponding values.

random effects by comparing the contribution of selected variable as fixed
and random effect to the model.
According to simulations and a real world data analysis, we find that the
outcome produced by the proposed approach is very competitive to other
existing methods.
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1 Introduction

Mean and median bias reduction (BR) (see Kosmidis et al., 2020), are
becoming increasingly popular in the estimation of generalized linear mod-
els (GLMs). Recent work by Sur and Candès (2019) and Kosmidis and
Firth (2021) also illustrates that mean BR may be particularly effective
in high-dimensional problems with p/n → κ ∈ (0, 1) where n and p are
the number of observations and parameters respectively. In this work, we
develop and present new algorithms to estimate GLMs with mean and
median BR for arbitrarily large data sets without encountering memory
issues. The algorithms come from adjusting particular quantities in the it-
eratively reweighted least squares (IWLS) algorithm for BR (see, Kosmidis
et al., 2020, Section 2) so that at each iteration the least squares optimisa-
tion problem can be solved with incremental QR decompositions. The key
insight for mean BR is reusing quantities from the previous IWLS itera-
tion, and for median BR, complementing that with a double least squares
computation at each iteration. The method gives exact, not approximate,
estimates and opens the door for using mean and median BR on large n
and large p data sets.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Incremental algorithms for bias reduction

2.1 Introduction to GLMs

Suppose that y = (yi, . . . , yn)
T
are observations of independent random

variables Y = (Y1, . . . , Yn)
T
each with probability density

fYi(y; θi, ϕ) = exp

{
yθi + b(θi)− c1(y)

ϕ/mi
− 1

2
a

(
−mi

ϕ

)
+ c2(y)

}
for some sufficiently smooth functions b(·), c1(·), a(·) and c2(·), and fixed
observation weights m1, . . . ,mn. The expected value and variance of Yi are
E[Yi] = µi = b′(θi) and Var[Yi] = ϕb′′(θi)/mi = ϕV (µi)/mi, respectively
where b′(θi) and b′′(θi) are the first two derivatives of b(θi) and V (µi) is the
variance function. The dispersion parameter ϕ allows shrinking or inflating
the contribution of the mean. A GLM links the mean µi to a linear predictor
ηi through a monotone, sufficiently smooth link function g(µi) = ηi with
ηi =

∑p
t=1 βtxit where xit is the (i, t)th component of a model matrix X,

and β = (β1, . . . , βp)
T
. An intercept parameter is typically included in the

linear predictor, in which case xi1 = 1 for all i ∈ {1, . . . , n}. In order to
estimate β we first compute the derivative of the log-likelihood, given by
expression (1)

sβ =
1

ϕ
XTWD−1(y − µ) (1)

where µ = (µ1, . . . , µn)
T
, W = diag{w1, . . . , wn}, D = diag{d1, . . . , dn}

and wi = mid
2
i /vi is the ith working weight, with di = dµi/dηi and vi =

V (µi). For brevity we will ignore the estimation of ϕ.

2.2 Incremental least squares with QR decomposition

Suppose we wish to regress Y ∈ Rn on X ∈ Rn×p with known weights
W ∈ Rn×n using least squares and we have the QR decomposition

W 1/2X =
[
Q1 Q2

] [ R1

0(n−p)×p

]
(2)

where Q1 ∈ Rn×p, Q2 ∈ Rn×(n−p), R1 is an upper triangular p× p matrix,
and 0(n−p)×p is a (n − p) × p matrix of zeros. The least squares estimate

β̂ ∈ Rp is given by back-solving QT
1W

1/2Y = R1β̂. Miller (1992) describes
how this entire process can be done incrementally, i.e. requiring only one
observation yi, xi = (xi1, . . . , xip)

T
and wi = (wi1, . . . , win)

T
at a time.

This is owed to the fact that we can generate the QR decomposition (2)
incrementally. The major benefit of an incremental approach is that we do
not require to have the entire data set in memory at any one time. As a
result, we can perform least squares on arbitrarily large data sets.
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2.3 Mean and median bias reduction for GLMs

We call sβ , from expression (1), the score function with respect to the
coefficients β ∈ Rp of a GLM. The maximum likelihood (ML) estimate is
found by solving sβ = 0p with respect to β where 0p is a p−vector of zeros.
Firth (1993) proposed adjusting the score equation sβ = 0p to

sβ +XTWξ = 0p

which results in mean BR estimates where ξ = (ξ1, . . . , ξn)
T

and ξi =
hid

′
i/(2diwi), d′i = d2µi/dη

2
i and hi is the “hat” value for the ith ob-

servation, obtained as the ith diagonal element of the matrix H =
X(XTWX)

−1
XTW . In a similar vein, Kenne Pagui et al. (2017) propose

a different adjustment

sβ +XTW (ξ +Xu) = 0p

which gives median BR estimates where u = (u1, . . . , up)
T
and

ut =
[
(XTWX)

−1
]T

t
XT

 h̃t,1{d1v′1/(6v1)− d′1/(2d1)}
...

h̃t,n{dnv′n/(6vn)− d′n/(2dn)}

 (3)

where [B]t denotes the tth row of matrix B as a column vector, v′i =
dV (µi)/dµi and h̃t,i is the ith diagonal element of XKtX

TW where
Kt = [F−1]t[F

−1]
T

t /[F
−1]tt with F = XTWX and [B]tt denotes the (t, t)th

element of the matrix B. Solving sβ = 0p for GLMs can be done using the
IWLS algorithm (Green, 1984), which solves a least squares problem at
each iteration until the estimates converge. The least squares problem can
be solved using the QR decomposition, which in turn can be done incre-
mentally requiring only the data for a single (or small block of) observation
at a time, as described in Section 2.2. For the case of GLMs this is useful
since all scalar quantities involved in IWLS (e.g. linear predictors, working
weights and working variates) depend only data from the corresponding
observations. We will call a quantity with this property local, and without
it non-local. This means we could, at each iteration of the IWLS algorithm,
solve the least squares problem by: reading in one observation, performing
a computation, and replace the observation with the next one. In this way
ML estimation of GLMs can be performed with data sets of arbitrary size
in n.
This is not directly possible for mean and median BR because the quantities
hi (i = 1, . . . , n) and u force the ith working observation in the least squares
problems at each iteration of the IWLS algorithms to involve quantities
which depend on all observations, i.e. non-local. This means we cannot
solve the problem as for ML by dealing with one observation at a time, and
thus the naive IWLS implementations of mean and median BR in Kosmidis
et al. (2020) cannot handle data sets with arbitrarily large n.
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2.4 IWLS for mean and median bias reduction

Expression (4) gives the update step for β at the (j + 1)th iteration in the
three implementations of the IWLS algorithm in this work, namely ML,
mean and median BR. The braces in (4) indicate the relevant working vari-

ates. For example z(j) = (z
(j)
1 , . . . , z

(j)
n )

T

with z
(j)
i = η

(j)
i + (yi − µ

(j)
i )/d

(j)
i

is the working variate for ML, and z(j) + ϕ(j)ξ(j) the working variate for
mean BR. The superscript (j) indicates a quantity that is evaluated at the
jth iteration.

β(j+1) ← (XTW (j)X)−1XTW (j)(

mean BR︷ ︸︸ ︷
z(j)︸︷︷︸
ML

+ ϕ(j)ξ(j) + ϕ(j)Xu(j)

︸ ︷︷ ︸
median BR

) (4)

2.5 Incremental algorithms

We will deal with the quantities that prevent incremental least squares
for mean and median BR, the “hat” values and u vector, separately.
First, the “hat” values. We note that in order to solve the least squares
problem at iteration (j − 1) we would have available the QR decompo-

sition W 1/2(j−1)X = Q
(j−1)
1 R

(j−1)
1 . The first idea is to substitute H(j)

with H(j−1) = Q(j−1)QT(j−1) at iteration j, so we now have ξ
∗(j)
i =

h
(j−1)
i d

′(j)
i /(2d

(j)
i w

(j)
i ) (i = 1, . . . , n). Since j/(j − 1) → 1 as j → ∞, the

algorithm has the same stationary point as the IWLS algorithms in Kos-

midis et al. (2020). Now, for median BR, instead of using u
(j)
t as defined

in expression (3) we reframe expression (3) as the following least squares
problem

U∗(j) = (XTW (j−1)X)
−1

XTW (j)


h̃
(j−1)
t,1 {d(j)1 v

′(j)
1 /(6v

(j)
1 )− d

′(j)
1 /(2d

(j)
1 )}/w(j)

1
...

h̃
(j−1)
t,n {d(j)n v

′(j)
n /(6v

(j)
n )− d

′(j)
n /(2d

(j)
n )}/w(j)

n


for (t = 1, . . . , p) and extract u

∗(j)
t =

[
U∗(j)]

t
where we use h̃

(j−1)
t,i and the

QR decomposition W 1/2(j−1)X = Q
(j−1)
1 R

(j−1)
1 from the previous iteration

in order to make all quantities involved local. With these two adjustments
we modify the update (4) to give expression (5)

β(j+1) ← (XTW (j)X)−1XTW (j)(

mean BR︷ ︸︸ ︷
z(j)︸︷︷︸
ML

+ ϕ(j)ξ∗(j) + ϕ(j)Xu∗(j)

︸ ︷︷ ︸
median BR

) (5)
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Since all quantities in expression (5) are local it is now possible to estimate
GLMs using mean and median BR using data sets with an arbitrarily large
number of observations, without encountering memory problems.

3 Demonstration

In Figure 1 we demonstrate these algorithms on the high-dimensional sim-
ulation set up used in Figure 2 of Sur and Candès (2019). We fit a logistic
regression model using ML, mean and median BR, data has n = 4000 ob-
servations, p = 800 predictor variables and Xit ∼ N(0, 1/n). We see mean
and median BR achieve numerically similar estimates centred around the
true values, whilst the ML estimates exhibit a larger variance and bias in
absolute value as estimates fan away from the non-zero coefficients.

Mean BR Median BR ML

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
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FIGURE 1. Simulation of mean and median bias reduction for logistic regres-
sion in the left and right panels respectively. n = 4000 observations, p = 800
predictor variables where β1 = · · · = β100 = 10, β101 = · · · = β200 = −10 and
β201 = · · · = β800 = 0 and Xit ∼ N(0, 1/n).
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Abstract: Missing data is known to be an inherent and pervasive problem in the
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(MNAR) is known to be one of the most complex and challenging problems
to handle in this field. One major issue is the fact MNAR missingness is an
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values, for example, through a follow up survey, then MNAR cannot be identified.
In this research, using a test for MNAR, we compare how effectively four follow
up designs detect the presence of MNAR.
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1 Introduction

In order to correctly make inferences in the presence of missing data, Ru-
bin (1976) classified missing data problems into Missing Data Mechanisms
(MDM). These mechanisms are Missing Completely at Random (MCAR),
Missing at Random (MAR) and Missing Not at Random (MNAR). One can
show that in terms of inference, the first two types are essentially ignorable.
However, MNAR cannot be ignored and is an untestable assumption based
on the original incomplete data (Little and Rubin (2002)). If not correctly
accounted for, MNAR can lead to significant bias in analysis and poten-
tially incorrect conclusions. If it is possible to follow-up or recover some
of the missing values, then statistical tests can be constructed (Carpenter
and Kenward (2007)) to detect the presence of MNAR.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Since (typically) only a small percentage of missing observations can be
recovered due to cost and time constraints, there is a demand to recover
missing values in a manner that complements such MNAR tests. The bene-
fits of considering MNAR in the design stage of an experiment were demon-
strated in (Lee, Mitra and Biedermann (2018)). However, the key difference
between this research and previous work is our inability to design the ex-
periment beforehand. Instead, we only have control to carefully construct,
or ‘design’, the follow up sample.
In what follows, we consider tests for MNAR along the lines proposed in
Carpenter and Kenward (2012) and investigate how different constructions
of the follow up sample (we will simultaneously use the word design) will
affect the Type I error and the power of the test. In Section 2, we introduce
the methodology. The main numerical results are presented in Section 3 and
concluding remarks are provided in Section 4.

2 Method and Analysis

Consider the simple regression model

Y = β0 + β1X + ε , (1)

where ε ∼ N(0, σ2) and β0, β1 and σ2 are potentially unknown parameters.
Suppose there is the possibility for missing values to be present in the
model, where for simplicity we assume missing values are constrained to
Y and the covariate X is always observed. Let M denote an indicator
random variable that equals one if Y is missing and zero if Y is present.
The MDM’s of Rubin (1976) are determined by the conditional density
f(M |X,Y, θ), where θ are some fixed parameters of the distribution. For
MCAR, missingness does not depend on X and Y , i.e.

f(M |X,Y, θ) = f(M | θ) .

For MAR, the probability of missingness is only dependent on observed
values, i.e.

f(M |X,Y, θ) = f(M |X, θ) .

For MNAR, the dependence on Y cannot be ignored. Under MCAR and
MAR, the MDM can often be ignored and unbiased inferences can be made
without needing to incorporate the MDM into the inferences (Rubin (1976);
Heitjan and Basu (1996)). However, a MNARmechanism cannot be ignored
and must be incorporated into the analysis to make appropriate inferences.
Combining this with the fact MNAR is an untestable assumption based on
the original data, analysing MNAR data is substantially more complicated
than other types of missing data. This is likely why the MAR assumption
(or the even stronger assumption of MCAR) is the most common assump-
tion when faced with missing data in practical applications. ,
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Consider a realisation of size n from the model in (1), resulting in the
vectors Y := (Y1, . . . , Yn) and X := (X1, . . . , Xn). Suppose nmiss values in
Y are missing but we know their corresponding covariate values in X. Now
assume one has the ability to recover n∗ cases from the nmiss missing values,
with n∗ ≤ nmiss. Let Y

∗ denote the augmented response data; that is the
Yi values that were originally observed and the n∗ of the recovered Yi. A
test for MNAR (from Carpenter and Kenward (2012) page 15) formulated
in what is referred to as the Selection Model framework (SMF) is as follows.
For Y ∗

i ∈ Y∗, fit the model

logitPr(Mi = 1) = α0 + α1Y
∗
i + α2Xi . (2)

Under the null hypothesis of MAR, we have α1 = 0, otherwise we conclude
MNAR.
In this research, we explore how different follow up designs (or ways of
choosing what missing response values to recover based only on their cor-
responding observed covariate values) affect the power of the SMF test for
detecting MNAR. In this paper, we will consider the following four follow
up designs: 1) Random, which involves a random selection across the co-
variate space of the missing cases; 2) Highest, where the n∗ highest values of
the covariates corresponding to the missing values are selected; 3) Smallest,
where n∗ values with the smallest covariates are selected; 4) Half Highest
Half Smallest Values which selects the n∗ values such that (approximately)
half of the recovered responses have the highest covariate values and half
have the smallest covariate values.

3 Simulation study

In the first example of this numerical study section, we generate points
according to the simple linear regression model:

Yi|(Xi = xi) ∼ N(1 + 2xi, 4) ,

with Xi ∼ N(5, 1), for i = 1, . . . , 1000. When introducing missingness into
the model, under a MAR mechanism we use

P (Mi = 1) = 1/(1 + exp(3− 0.42 · xi)) . (3)

Under a MNAR mechanism, we will use

P (Mi = 1) = 1/(1 + exp(3− 0.19 · yi)) . (4)

The choice of these parameters results in (on average) 300 missing values
being simulated in Y , or approximately 30% missingness in the response.
We then apply the SMF test in (2), performing a suitable hypothesis test on
α1, and subsequently replicate the process 1, 000 times to obtain empirical
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summaries for Type 1 error (under MAR) and power (under MNAR) using
the different designs.
In Figure 1 (Left), we plot empirical Type 1 error against the recovered sam-
ple size for the four designs considered; here we use the missing mechanism
provided in (3). In this figure, we see all designs approximately produce a
Type 1 error close to the pre-specified value of 0.05. The Highest design
appears to struggle slightly controlling Type 1 error; its error is above 0.05
when fewer than 67% of the missing values are recovered. The Smallest
design gives Type 1 errors above 0.05 when less than 50% of the missing
values are recovered. Selecting Half Highest Half Smallest appears to pro-
duce Type 1 errors values very close but slightly below 0.05. The Random
design produces Type 1 errors in line with expectation, where the volatility
around 0.05 appears to be from simulation variance.
Type 1 error appears only approximately close to 0.05 for most designs due
to the following reason. By fitting the logit model in (2), one immediately
assumes the missing mechanism (MAR in this case) is of the expit form
1/(1+ exp(β0−β1x)). Whilst this is true in the example considered in (3),
there is no guarantee that when fitting the logit model to the augmented
data with n∗ < nmiss that the true model is also of the required expit form.
This appears to only be true for a Random design. Nevertheless, as Figure
1 (Left) demonstrates (and later Figure 2 (Left)), this issue does not seem
to drastically impact results and meaningful analysis with the test in (2)
can still be obtained if one accepts this slight caveat.
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FIGURE 1. Left: Type 1 error using SMF. Right: power using SMF

In Figure 1 (Right), we plot power against recovered sample size using the
MNAR model in (4) for the four designs considered. At n∗ = 30, the power
for all designs is less than or equal to 0.512. The Highest design has the
lowest power. The Random design seems to have the highest power from
n∗ from 30 − 100. For n∗ = 150 and above, the Smallest design and Half
highest/smallest design seem to have the highest power.
In the second example of this numerical study section, we generate points
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according to the model:

Yi|(Xi = xi) ∼ N(1 + xi, 4) ,

with Xi ∼ N(1, 4), for i = 1, . . . , 1000. When introducing missingness into
the model, under a MAR mechanism we use

P (Mi = 1) = 1/(1 + exp(0.4 + xi)) . (5)

Under a MNAR mechanism, we will use

P (Mi = 1) = 1/(1 + exp(0.5 + xi − 0.1 · yi)) . (6)

The choice of these parameters results in approximately 30% missingness
in the response variable. In Figure 2 (Left) we plot the empirical Type
1 errors against the recovered sample size. The style of this figure is the
same as Figure 1 (Left) and a similar phenomenon is seen for the MAR
mechanism in (5); that is, Type 1 errors seem approximately close to the
pre-specified error of 0.05. The Smallest design seems to suffer more than
the other designs in terms of Type 1 error. In Figure 2 (Right), we depict
power against the recovered sample size using the MNARmechanism of (6).
Figure 2 is extremely insightful and provides a proof of concept example
that was not so obviously seen in Figure 1 (Right). It demonstrates that for
this particular MNAR mechanism, the Random design can be significantly
improved on by the Highest design across all recovery sample sizes.
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FIGURE 2. Left: Type 1 error using SMF. Right: power using SMF

Another important observation from Figure 2 (Right) is that for the High-
est design, there is little benefit in recovering more than 180 of the missing
responses (or 60% of the missing vales) should one encounter this MNAR
mechanism. If a particular cost is associated with each recovery, a signifi-
cant saving could be made with a minimal loss in power.
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4 Conclusion

This research has demonstrated a proof of concept example by showing
that different follow up designs have different capabilities of identifying the
presence of MNAR. Most importantly, we have seen an example where the
Random design can be beaten in terms of power. This provides motivation
to theoretically study the SMF test. A careful design of the follow up sample
has the potential to provide significant benefits to the identification of
MNAR over a random follow up.
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Expectation-Maximization, which is considered among the most reliable esti-
mation approaches.
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1 Introduction

Generalized linear latent variable models (GLLVM) are a widely used
framework to incorporate latent variables within regression problems, al-
lowing for responses of different types in the same fashion as multivariate
generalized linear models. There is a clear connection with the mixed model
literature, since latent variables can be seen as a special case of random
effects related to each observed unit.
Maximum likelihood estimation of GLLVM is well known to be troublesome
since it involves integrals with no closed-form solution to be evaluated at
each unit in the sample. As reviewed in Bartholomew et al. (2011), the stan-
dard approach is to rely on algorithms based on Expectation-Maximization
(EM), with the E-step approximated through a Gaussian quadrature pro-
cedure. This typically does not allow to accurately scale model estimation

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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on latent spaces with dimensions greater than two, or slightly higher in the
case of adaptive quadrature; see for example Schilling and Bock (2005).
Because of that, several methods have been proposed in the literature to
extend GLLVM estimation on larger datasets, but no generally reliable
estimation method is available for practitioners yet.
Adapting applications in the generalized linear mixed models literature
(e.g. Skaug, 2002) we propose a simulated maximum likelihood approach
(SML), implemented as an explicitly parameter dependent importance sam-
pling procedure, as outlined in Brinch (2012). The estimation is therefore
based on a set of random points common to all the iterations. A further
improvement considered here is to switch to randomized quasi-Monte Carlo
integration, as in Jank (2006); see also Lemieux (2009) for an overview.

2 Simulated maximum likelihood

Let n be the sample size, p the number of observed variables and q the
dimension of the latent space. The observed dataset y is the realiza-
tion of the n × p random matrix Y , such that Y = (Y T

1 , . . . , Y T
n ), with

Yi = (Yi1, . . . , Yip) and i = 1, . . . , n. At the same time, u is defined as the
realization of the n× q random matrix U such that U = (UT

1 , . . . , U
T
n ) and

Ui = (Ui1, . . . , Uiq), with Ui
iid∼ Nq(0,Σ) and Σ is a correlation matrix. With

ϕq(ui; 0,Σ) we refer to the density associated with Nq(0,Σ) evaluated at
ui. Let Λ be a p×q matrix which plays a similar role of a loading matrix in
normal factor models, such that Λ = (λT

1 , . . . , λ
T
p ) and λj = (λj1, . . . , λjq),

and α = (α1, . . . , αp) a vector of intercepts, for j = 1, . . . , p. Then, the
interest lies in the estimation of the free parameters in α, Λ and Σ, which
are collected in the d-dimensional vector Ψ.
The model assumes the observed variables to be locally independent given
the latent space, such that the joint likelihood of the data and the latent
variables for the i-th subject is

L(Ψ; yi, ui) = ϕq(ui; 0,Σ)

p∏
j

p(yij |ui; ηij), (1)

where p(yij |ui; ηij) is assumed to be a member of the exponential family,
and its canonical parameter depends on the linear predictor ηij = αj+λT

j ui

through an appropriate link function. It follows that, since the values of ui

are not known, the likelihood function requires to compute the integral

L(Ψ; yi) =

∫
Rq

ϕq(ui; 0,Σ)

p∏
j

p(yij |ui; ηij)dui. (2)

Aside from the special case where p(yij |ui; ηij) is normal, (2) has no closed-
form solution and must be approximated.
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Our proposal simulates the integral in (2) through an importance sampling
procedure, which suitably extends the first-order Laplace approximation to
the integral (2). More precisely, the importance distribution is chosen as the
normal density implied by a second-order Taylor’s expansion of (1) around
its maximum with respect to ui. The generation of new samples from the
importance distribution relies on a quasi-Monte Carlo procedure, based
on randomized Halton sequences (see Lemieux 2009, Ch. 5). Namely, the
approximation of (2) is obtained using R independent sequences of length
M , such that the simulated likelihood is computed via

LIS(Ψ; y) =
n∏
i

1

R

R∑
r

1

M

M∑
m

L(Ψ;Yi = yi, Ui = v
(m)(r)
i )

ϕq(v
(m)(r)
i ; ûi(Ψ), Hi(Ψ)−1)

. (3)

Here, ûi(Ψ) is the maximizer of ℓ(Ψ; yi, ui) given the data and the pa-
rameter vector, Hi(Ψ) is the related matrix of negative second deriva-

tives evaluated at ûi(Ψ) and v
(m)(r)
i is drawn from Nq(ûi(Ψ), Hi(Ψ)−1)

for m = 1, . . . ,M , r = 1, . . . , R and i = 1, . . . , n. Note that, following the
explicitly parameter dependent construction outlined in Brinch (2012), the

importance sample v
(m)(r)
i needs to be expressed as

v
(m)(r)
i = ûi(Ψ) + Ci(Ψ)TΦ−1

q (h(m)(r)), (4)

where Ci(Ψ) is the lower Cholesky decomposition of Hi(Ψ)−1, Φq(·) the
cumulative distribution function of a q-dimensional standard normal, and
h(m)(r) ∈ [0, 1]q is the m-th element of the r-th halton sequence gener-
ated following the algorithm in Owen (2017). Note that, as expected, when
R = 1, the simulation of (2) corresponds to a deterministic quasi-Monte
Carlo procedure. On the other hand, despite the linear increase in R of
the computational cost, using R > 1 provides the possibility to assess the
variance of the importance sampling estimate of the integral in (2) via its
sample estimate over the R independent sequences.

3 A simulation study

The results of a small-scale simulation study are reported to highlight the
effectiveness of the proposed method even in simple settings, where the
EM-based estimation procedure relying on Gaussian quadrature integra-
tion of latent variables is usually considered the standard option. Binary
data are generated from a true model with logit link, p = 8, q = 2 and
n ∈ {100, 250, 500, 1000}. The loading matrix has a simple structure, with
a single loading per row and four loadings in each column. For the sake of
simplicity, the latent variables are assumed to be uncorrelated. For EM-
based estimation, the implementation in mirt (Chalmers, 2012) is used,
with 140 Gaussian quadrature points per dimension. On the other hand,
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FIGURE 1. Top: Median Monte Carlo average MSE for intercepts and loadings.
Center and bottom: respectively, Monte Carlo distribution of λ̂41 and λ̂52, for
n ∈ {100, 250, 500, 1000}. Dashed lines represent the true value of the parameter.
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SML estimation is performed through custom code written in Rcpp (Ed-
delbuettel and François, 2011), and the importance sampling dimensions
are set to M = 250 with R = 5.
Figure 1 shows results for a Monte Carlo study with 100 replications. The
plot at the top highlights the difference between the two methods in terms of
mean square error (MSE). In particular, it tracks the median of the MSE for
estimated intercepts and loadings across different sample sizes. While the
two methods converge to the same estimates on larger sample sizes, SML
clearly outperforms EM-based estimation on small-to-moderate samples.
The lower panels show a more detailed representation of the distribution
of individual estimators. The estimates λ̂41 and λ̂52 are presented as an
example, but all the remaining ones behave similarly. The histograms point
out that SML estimates are more concentrated around the true parameter
value, while EM-based estimation exhibits heavier tail behavior.

4 Discussion and ongoing work

The estimation of GLLVM has been proven to be generally challenging,
and at the time of writing one can safely say there is no available software
that estimates such models in a reliable and free of convergence issues
fashion. Here we propose a simulated maximum likelihood approach that
is competitive with a quadrature-based EM approach even in a simple
setting. Since SML estimation does not rely on a quadrature procedure,
it does not suffer from the exponential complexity in the dimension of
the latent space that affects the standard EM estimation approach. The
accuracy of the method can be improved to an arbitrary level by choosing
a higher simulation sample size, without the curse of dimensionality of
quadrature-based methods. Therefore, the estimation can be potentially
carried out also in more complex settings, providing practitioners with a
new reliable tool to carry out approximate maximum likelihood estimation.
An essential step for this aim is the availability of statistical software and,
to this end, an R package implementing SML estimation for some notable
GLLVM is currently under development.
Other investigations currently in progress concern the comparison of the
results with further recent proposals, such as dimension-wise quadrature
(Bianconcini et al., 2017), variational approximations (Hui et al., 2017),
and stochastic EM algorithms (Zhang et al., 2020).
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1 Introduction

In a panel data set with individuals observed in time, clustering techniques
may be useful for finding groups of similar individuals. With exception for
the Markov mixtures proposed by Luo et al. (2021), all the approaches for
handling heterogeneity in multi-state models are related to finite mixtures
and consider completely observed processes, see for example Fruhwirth-
Schnatter and Pamminger (2010). In this paper we propose a general frame-
work for tackling the clustering problem for different classes of of discretely
observed multi-state processes. In general, note that inference for general-
izations of Markov models may present computational difficulties when ob-
servations are at discrete time points, so that the process is not completely

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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observed. In fact, the likelihood function is not available and approximation
methods are required. Barone and Tancredi (2022) reconstruct the likeli-
hood function by simulating the trajectories between the observed points
with a Metropolis-Hastings step based on Markovian proposals drawn from
the uniformization algorithm of Hobolth and Stone (2009). Here, we extend
their approach in the context of mixture models. For the sake of brevity we
present the case of mixtures of semi-Markov models but our approach can
be efficiently applied to the case of in-homogeneous Markov models and
also to the simpler case of Markov models.

2 Semi-Markov multi-state models

Let us consider a continuous time process Y (·) = {Y (t), t ≥ 0} with discrete
state space S = {1, . . . S}. We assume that the process Y (·) is semi-Markov.
This is equivalent to say that the instantaneous transition rates qrs(t,Ft),
conditionally on the past history of the process, depend only on the time
spent in the current state, i.e.

qrs(t,Ft) = lim
δt→0

P{Y (t+ δt) = s|X(t) = r, T ∗ = t− u}
δt

where T ∗ denotes the entry time in the last state assumed before time
t. Hence, semi-Markov models can be obtained by defining the transition
functions qrs(u) and setting

P{Y (t+δt) = s|Y (t) = r, T ∗ = t−u} =

{
qrs(u)δt+ o(δt) s ̸= r
1−

∑
l ̸=r qrl(u)δt+ o(δt) s = r

Notice that a semi-Markov process Y (t) can be also defined as the result of
a state sequence generated by a Markov chain with transition probabilities
prs and sojourn times having distribution functions Frs, that is depending
only on the departure and arrival states. The density of trajectory y on the
interval [0, T ] can be generally written as

pθ(y) = pθ(s, z) =

(
n∏

i=1

psi−1siq(zi − zi−1;ϕsi−1
)e−

∫ zi−zi−1
0 q(u;ϕsi−1

,)du

)
×e−

∫ T−zn
0

q(u;ϕsn )du,

where z = (z1, . . . , zn) is the sequence of jump times, s = (s1, . . . , sn) is
the sequence of visited states and θ ∈ Θ is the vector with all the process
parameters.

3 Dirichlet Process Mixture of semi-Markov models

In this section we introduce the notation of the DPM model. Let pθ(y) be
the probability density function of a semi-Markov trajectory y(t) = (s, z).
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Let G be a probability distribution defined on the parameter space Θ. We
define the density function of an infinite mixture of semi-Markov models
pG with respect to the mixing measure G as

pG(s, z) =

∫
pθ(s, z)dG(θ).

By assuming a DP (M,G0) on the mixing measure G, we get a DPM of
semi-Markov models. Let yi(t) = (s, z)i, for i = 1, . . . , N , be N fully ob-
served paths on [0, Ti]. Note that N represents the number of sample indi-
viduals. We may rewrite the model in a hierarchical form:

yi(t)|θi
ind∼ pθi

θi|G
iid∼ G

G ∼ DP(MG0).

To extend the fitting of the DPM of semi-Markov models to the the case
of discretely observed trajectories, that is when the exact jump times are
unknown and the density function pθ(y) is not available we use the algo-
rithm proposed by Barone and Tancredi (2022) to make MCMC inference
for parametric semi-Markov models. In fact, this algorithm reconstructs
the trajectories between the discretely observed points for each observed
individual via a Metropolis-Hastings step based on a Markovian approx-
imation of the semi-Markov process. Hence by inserting this step in the
algorithm for DPM of fully observed continuous time semi-Markov process
we can naturally handle also the discretely observed case.

4 Application

As a real data application, we analyze the progression of coronary allograft
vasculopathy (CAV) with a data set available with the R package msm, see
Jackson (2011). The data provides the disease status (CAV-free (1), mild
CAV (2) and moderate or severe CAV (3)) observed approximately each
year after transplant for a set of 622 subjects followed up until their most
recent visit if alive at the end of the observation period or until death (state
(4)). Death times are exactly observed. To specify the semi-Markov model
we assume Weibull sojourn times. The parameter set is θ = (p, γ, α) where
γ and α are the vector with the rate and shape parameters of the Weibull
sojourn times and p is the matrix with the transition probabilities. For the
Dirichlet process we chose a precision parameter M = 1 and defined the
centering measure to be the product between Dirichlet distributions for the
rows of p, Gamma distributions for the rate parameters and log Normal
distributions for the sahpe parameters.In Table 1 and Figure 1 we show the
results by reporting some posterior summaries for the model parameters.
Note that we indicate with Ψ the cluster indexes.
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TABLE 1. CAV data: DPM of semi-Markov.

ψ γ1 γ2 γ3 α1 α2 α3

E(·|Y, ψ) 1 0.13 0.24 0.25 1,47 1.46 1.10
SD(·|Y, ψ) 1 0.01 0.02 0.03 0.10 0.18 0.12
q0.025(·|Y, ψ) 1 0.12 0.19 0.20 1.30 1.16 0.88
q0.975(·|Y, ψ) 1 0.14 0.29 0.30 1.65 1.85 1.34
E(·|Y, ψ) 2 6.27 1.42 1.30 0.66 0.89 4.45
SD(·|Y, ψ) 2 3.62 1.45 1.01 0.19 1.32 4.45
q0.025(·|Y, ψ) 2 0.16 0.02 0.08 0.39 0.17 0.37
q0.975(·|Y, ψ) 2 13.08 4.30 3.81 1.10 4.95 15.85

ψ p12 p14 p23 p24
E(·|Y, ψ) 1 0.71 0.29 0.72 0.28
SD(·|Y, ψ) 1 0.04 0.04 0.08 0.08
q0.025(·|Y, ψ) 1 0.64 0.21 0.56 0.12
q0.975(·|Y, ψ) 1 0.79 0.36 0.88 0.44
E(·|Y, ψ) 2 0.71 0.29 0.16 0.84
SD(·|Y, ψ) 2 0.36 0.36 0.23 0.23
q0.025(·|Y, ψ) 2 0.02 0.00 0.00 0.13
q0.975(·|Y, ψ) 2 1.00 0.98 0.87 1.00
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FIGURE 1. Maximum number of mixture components observed for each itera-
tion (top left ) distribution of the observations across the estimated components
(bottomn left ); death time cumulative posterior predictive distributions (right).
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Abstract: The boosting algorithm was originally proposed in the machine learn-
ing literature as a means to obtain improved ensemble classification procedures.
This idea has been developed in the statistical setting, with the aim of fitting
regression models using a sequential procedure which performs also variable se-
lection. In this paper a new component-wise boosting algorithm is applied for
selecting variance components in linear mixed models. This represents the nov-
elty of the proposal since so far the focus has been on the fixed part of the model.
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1 Introduction

Mixed models are widely used to account for the correlations among obser-
vations nested in groups or collected over time. When variable selection is
an issue, the boosting approach proposed by Tutz and Groll (2010) can
be considered, even if the main attention is on the fixed effects, while
the random effects should be pre-specified. The purpose of our proposal
is to deal with the random part of the model and to develop a data-driven
method to automatically select which variables have a random effect. This
objective poses new challenges, since the boosting methods proposed in
the literature can not be directly applied. In fact, both the gradient boost-
ing (Friedman, 2001) and the likelihood-based boosting (Tutz and Binder,
2006) approaches are based on the gradient of the objective function, which,
in this case, is null in the starting point of the algorithm. As a result, these
algorithms are not able to move from the initial point and then alternative
strategies should be defined. In this paper, we propose a new component-
wise boosting algorithm based on directions of negative curvature, besides

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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the classical Newton direction. After introducing the model and the like-
lihood, we describe the new algorithm and we present the results of a
preliminary simulation study which confirms the validity of the approach.

2 Model specification and likelihood function

The mixed effects model for group i can be expressed as

yi = Xiβ + Zibi + εi, i = 1, . . . ,M,

bi ∼ N(0, σ2Σ), εi ∼ N(0, σ2I),

where yi is a vector of responses with dimension ni, Xi is a matrix of
predictors with dimension ni×p, β is a p-dimensional vector of fixed effects,
Zi is a matrix of predictors with dimension ni×q and bi is a q-dimensional
vector of random effects. Using the Cholesky factorization of the covariance
matrix Σ = CTC, the random effects can be expressed as bi = CTui and
the model can be written as

yi = Xiβ + ZiC
Tui + εi, i = 1, . . . ,M,

ui ∼ N(0, σ2I), εi ∼ N(0, σ2I),

which is convenient for computational purposes, when some components in
Σ are zero. Let θ be the vector of parameters that determine C. Similarly
to Bates and DebRoy (2004), the likelihood function for the data in group
i is

ℓ(β,θ, σ2) =

∫
1

(2πσ2)(n+q)/2
exp

(
||yi −Xiβ − ZiC

Tui||2 + uT
i ui

−2σ2

)
dui,

and the profile log-likelihood for θ is

ℓp(θ) = −1

2
log
(
|CZT

i ZiC
T + I|

)
− ni

2

[
1 + log

(
2πr2yy
n

)]
,

where ryy derives from the following decomposition:CZT
i ZiC

T + I CZT
i Xi CZT

i yi

XT
i ZiC

T XT
i Xi XT

i yi

yT
i ZiC

T yT
i Xi yT

i yi

 = RT
e Re,

with

Re =

RZZ RZX rZy

0 RXX rXy

0 0 ryy

 .

Furthermore, the matrix C is written as ΓD, where Γ is upper triangular
with ones on the diagonal andD is a diagonal matrix, so that a zero element
on the diagonal of D determines that the variance of the corresponding
random effect is zero. This parameterization was adopted also in Bondel et
al. (2010).

391



Battauz and Vidoni

3 The boosting algorithm

Starting from a model with variance components all set equal to zero,
the algorithm, at each step, updates the parameter in θ that leads to the
largest decrease of the objective function, which is the negative profile log-
likelihood. To this end, two alternative directions are computed at each
step: a negative curvature direction and a Newton direction. The negative
curvature direction corresponds to the eigenvector associated to the min-
imum negative eigenvalue (if any) of the Hessian matrix. Since only one
parameter is considered at a time, the eigenvalue is simply given by the
value on the diagonal of the Hessian matrix and the eigenvector is equal to
1. The decrease of the objective function along each direction is evaluated
on the basis of its quadratic approximation. The direction so obtained is
then multiplied by a small step-length in order to produce a weak learner.
The sequential update of θ continues until a suitable stopping criterion is
satisfied.
The algorithm is a special instance of the optimization method proposed
in Gould et al. (2000) and a similar approach was employed to deal with
the estimation of factor analysis models for binary data in Battauz and Vi-
doni (2022). The procedure is implemented in R and C++. Computational
methods similar to Bates and DebRoy (2004) have been employed for an
efficient evaluation of the profile log-likelihood function and its derivatives,
which is essential to obtain a fast procedure.

4 A preliminary simulation study

The performance of the proposal was investigated through a simulation
study. The settings are similarly to Bondell et al. (2010). The data are
generated form a model with 3 random effects with covariance matrix 9 4.8 0.6

4.8 4 1
0.6 1 1


and σ2=1. Three cases are considered: 1. M = 30, ni = 5 and 4 potential
variables, 2. M = 60, ni = 10 and 4 potential variables, 3. M = 60,
ni = 5 and 6 potential variables. For each of them, 200 datasets were
generated. The independent variables are generated from a uniform (−2, 2)
distribution. As stopping rule, we used the conditional AIC (Vaida and
Blanchard, 2005). In case 1. our boosting algorithm correctly identifies the
variance component equal to zero in 85% of the replications. In case 2. this
rate is equal to 90%, and it reaches 94% in case 3. However, the algorithm
tends to underestimate the variance components that are different from
zero and, although the variability of the estimates obtained with boosting
is lower than the variability of the maximum likelihood estimates, the root
mean square error tends to be higher for the former.
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5 Conclusions

The proposal of this paper revealed effective in detecting which variables
have a random effect. However, the specification of the stopping criterion
and the study of the performance of the boosting estimators are issues that
require further investigation.

References

Battauz, M., and Vidoni, P. (2022). A likelihood-based boosting algo-
rithm for factor analysis models with binary data. Computational
Statistics and Data Analysis, 168, 107412.

Bates, D. M., and DebRoy, S. (2004). Linear mixed models and penalized
least squares. Journal of Multivariate Analysis, 91, 1 – 17.

Bondell, H. D., Krishna, A., and Ghosh, S. K. (2010). Joint Variable Se-
lection for Fixed and Random Effects in Linear Mixed-Effects Models.
Biometrics, 66, 1069 – 1077.

Friedman, J. H. (2001). Greedy Function Approximation: A Gradient
Boosting Machine. The Annals of Statistics, 29, 1189 – 1232.

Gould, N. I. M., Lucidi, S., Roma, M., and Toint, PH.L. (2000). Exploit-
ing negative curvature directions in linesearch methods for uncon-
strained optimization. Optimization Methods and Software, 14, 75 –
98.

Tutz, G., and Binder, H. (2006). Generalized Additive Modeling with Im-
plicit Variable Selection by Likelihood-Based Boosting. Biometrics,
62, 961 – 971.

Tutz, G., and Groll, A. (2010). Generalized Linear Mixed Models Based
on Boosting. In: Kneib T., Tutz G. (Eds.) Statistical Modelling and
Regression Structures. Berlin: Physica-Verlag.

Vaida, F., and Blanchard, S. (2005). Conditional Akaike Information for
Mixed-Effects Models. Biometrika, 92, 351 – 370.

393



A Model of Individual BMI Trajectories

Laurens Bogaardt1, Anoukh van Giessen1, Susan Picavet1 and
Hendriek Boshuizen1

1 National Institute for Public Health and the Environment (RIVM), Bilthoven,
The Netherlands.

E-mail for correspondence: laurens.bogaardt@rivm.nl

Abstract: A model of BMI is an important building block of health simulations
aimed at estimating goverment policy effects with regard to obesity. We created
a model of BMI which shows realistic behaviour at an individual level but which
also generates representative, population level distributions. The model is con-
structed by combining two datasets. Firstly, the population level distribution is
extracted from a large, cross-sectional dataset. In addition, longitudinal data is
used to model how individuals move along typical trajectories over time.
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1 Introduction

Overweight and obesity pose significant health risks in many countries (Dai
et al. 2020). Consequently, governments spend much effort to curb the in-
creasing trends (Van Rinsum et al. 2018). Investigating what course of
action is most fruitful is often done using health simulations (Levy at al.
2011). A model of BMI is the first step in such analyses. A common mod-
elling strategy is to assign to each individual a percentile within the pop-
ulation level distribution, assuming this relative position stays fixed over
their lifetime (McPherson et al. 2007, OECD 2019). A more realistic model
can have the percentile of each individual fluctuate over time as well.
We created a model of BMI which shows realistic behaviour at an individual
level but which also generates representative, population level distributions
using data of the adult population of the Netherlands. We cleverly combine
cross-sectional data with longitudinal data. The cross-sectional dataset pro-
vides representative information about the population level distribution of
BMI. At an individual level, BMI fluctuates over time, following typical
trajectories. These trajectories are modelled using the longitudinal data.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Population Level Distribution

To describe the population level distribution of BMI, we require a cross-
sectional dataset representative of the Netherlands and large enough to
accommodate various stratifications of the population. For government
policy simulations, stratifying by sex, education level and age is usually
adequate. The Public Health Monitor dataset is a Dutch cross-sectional
dataset based on a large, health-related questionnaire (GGD’en, CBS en
RIVM 2012). This questionnaire was administered in 2012 by the Commu-
nity Health Services, Statistics Netherlands and the National Institute for
Public Health and the Environment. To deal with non-normal BMI values,
we use the flexible sinh-arcsinh normal distribution defined by four param-
eters; µ, σ, ν and τ (Jones and Pewsey 2009, Jones and Pewsey 2019). We
can incorporate age into this analysis by making use of the GAMLSS pack-
age in R (Rigby and Stasinopoulos 2005, Stasinopoulos and Rigby 2007,
R Core Team 2021). This allows us to model each of the four distribution
parameters as functions of the predictors. Initially, we fitted splines to all
four of the parameters, for both sexes and all three education levels. This
indicated an approximately quadratic relationship with age for the µ and
σ parameters, whereas the education level mostly impacted their intercept.
The ν and τ parameters barely differed by age or education. So we repeated
the analysis for a restricted, parametric model, given by equation 1.

µ = µeducation + µage × age + µage2 × age2

σ = σeducation + σage × age + σage2 × age2

ν = νintercept
τ = τintercept

(1)

The resulting coefficients are listed in table 1.

TABLE 1. The coefficients for the population level BMI distribution.

µlow
educa. µmid

educa. µhigh
educa. µage µage2 νintercept

Male 18.05 17.75 17.20 0.2573 -0.002137 0.2626
Female 19.00 18.29 17.61 0.1560 -0.001174 0.4436

σlow
educa. σmid

educa. σhigh
educa. σage σage2 τintercept

Male 2.220 1.924 1.677 0.03491 -0.0003327 0.7680
Female 2.728 2.398 1.960 0.03460 -0.0002926 0.8302

To examine the model’s goodness of fit, we can first group individuals
according to whether they have underweight, normal weight, overweight or
obesity. Then we compare the prevalences from the predicted values to the
Public Health Monitor 2012 data, as shown in figure 1. The fit seems good.
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FIGURE 1. The observed and fit prevalences of BMI categories by sex and age.

3 Individual Trajectories

Next, we want to understand individual trajectories. Our approach is to
reduce the BMI values in our longitudinal data to z-scores following a
transformation based on the population level distribution and using values
for µ, σ, ν and τ appropriate for the individual’s sex, education level and
age. Subsequently, we assume that individuals’ z-scores follow stochastic
trajectories over their lifetimes and that their BMI values are those z-scores
back-transformed to the population level distribution.
This requires longitudinal data with multiple measurements over a rela-
tively long time. The Doetinchem Cohort Study provides such data. This
study has followed a group of individuals from the municipality of Doet-
inchem in the Netherlands for the past 30 years (Verschuren et al. 2008).
Its aim is to study lifestyle factors and biological risk factors on aspects
of health. The participants underwent a health examination about every 5
years since 1987. A key feature of this panel is that characteristics such as
BMI were measured by research assistants instead of being self-reported.
From section 2, we know the BMI distribution stratified by sex, education
level and age using the four parameters µ, σ, ν and τ . This distribution
implies a transformation to z-scores. All the BMI measurements from our
longitudinal studies can be transformed using the specific parameters as-
sociated with the individuals’ sex, education level and age. This procedure
removes the dependencies on these characteristics from the z-scores.
The individual trajectories are assumed to contain long-term, medium-term
and short-term effects which can be described by a mixed effects model.
The long-term effects are operationalised as the random intercept, which
indicates the tendency to belong to the upper or lower percentiles of the
BMI distribution. In the percentile-method, this random intercept is the
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only effect which determines the trajectories. Our model generalises this
method by including medium-term effects which are represented by an au-
toregressive process (AR1). This process assumes that, at each time period,
a random shock occurs which either pushes the BMI z-score up or down.
The effect of a shock decays exponentially over time, similar to how habits
wax and wane. The overall effect is the sum of all previous shocks, which
results in a meandering BMI value with temporal autocorrelation. Short-
term effects are modelled as additional uncorrelated error representing daily
fluctuations in weight. Models with these three components are described
in detail in Diggle (1994) and Verbeke and Molenberghs (2000). Equation 2
shows our model for the vector Zi of BMI z-scores of individual i. Here,
J is the matrix of only ones and I is the identity matrix. It was fit to our
longitudinal data using the nlme package in R (Pinheiro et al. 2021).

Zi = β0 + β1 × age + RIi + AR1i + ϵi
RIi ∼ N (0, σ2

intercept × J)

AR1i ∼ N (0, Σ) where Σtt′ = σ2
correlated × ρ

|t−t′|
temporal

ϵi ∼ N (0, σ2
uncorrelated × I)

(2)

We know that Doetinchem is not a completely representative sample, so
it will have a different population level distribution then the one obtained
in section 2 which we used to transform the BMI values into z-scores.
Consequently, this procedure need not result in values with zero mean and
unit standard deviation; some bias may remain. Ultimately, we want a
model which suits the entire population, so which produces true z-scores.
A simple solution is to model the bias by including a fixed intercept and
fixed slope in our statistical analysis. We are not interested in the values of
this intercept and slope, but by including the terms, the other parameters
are not compromised. The estimated values are listed in table 2.

TABLE 2. The parameters of the BMI z-score trajectories.

σintercept ρtemporal σcorrelated σuncorrelated

Male 0.0020 0.9878 0.1535 0.1657
Female 0.0013 0.9887 0.1463 0.2120

To provide some feeling for the model, we can generate z-scores for a few
individuals and visually compare these to values from the Doetinchem Co-
hort Study. Although it depends on the precise random samples which are
drawn, figure 2 shows that, on the face of it, the generated z-scores and the
observed data are similar. This give credence to our idea that modelling z-
scores using a mixed effects model with an AR1 process yields realistic BMI
trajectories. Transforming these z-scores to BMI values can be done using
the appropriate values for µ, σ, ν and τ , which depend on the individual’s
sex, education level and age following equation 1.
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FIGURE 2. A sample of observed and model generated z-scores by wave.

4 Conclusion

To sum up, we fitted a population level BMI distribution, stratified by sex,
education level and age, to a cross-sectional dataset of the Netherlands in
2012. Subsequently, we modelled individual trajectories as the z-scores of
this distribution by making use of a mixed effects model with long-term,
medium-term and short-term effects. Some limitations do remain. For one,
the BMI values used to fit the model are self-reported. Previous research has
shown that there can be a discrepancy between self-reported and measured
BMI values and that individuals with a high BMI tend to underreport their
weight (Olfert 2018). Another important limitation concerns the applica-
tion of government interventions on BMI. When a lifestyle intervention is
simulated, the direct effect on BMI must be modelled, including how its
impact wanes over time. It would be incorrect to assume the temporal au-
tocorrelation found in our prediction model implies something about the
speed at which intervention effects decay.
The methods outlined here may be extended in various ways. First of all,
the set of co-variates can be expanded by any other predictor which has
some association with BMI. The sole requirement is that this predictor is
found in both the cross-sectional and the longitudinal data. Secondly, the
BMI trajectories of children and adolescents could be included. Likewise,
the method of fitting a flexible distribution at the population level and
modelling longitudinal z-scores as a mixed effects model could be applied to
other continuous variables such as daily sugar intake or blood pressure. And
finally, a generalisation which predicts multiple risk factors simultaneously
can be made, which would be a great addition to analyses of government
intervention on lifestyle choices.
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Abstract: Reliable short-term predictions play a crucial role when it comes to
supporting the decision-making process of any quickly evolving industry, espe-
cially in the energy sector, where supply, demand and prices are characterized by
high volatility and structural market changes. We then propose a new dynamic
quantile regression model for estimating and forecasting the short-term evolution
of power load consumption in the US. A state-space representation is consid-
ered in order to disentangle different signal components, such as smooth trends,
cycles, stationary fluctuations and, possibly, non-linear covariate effects. Taking
a Bayesian perspective, the parameters and latent states are estimated with an
efficient variational Bayes approximation. Several quantile predictions are then
combined to describe the future distribution of the power load in a probabilistic
forecasting vein, that not only provides a pointwise estimate but also delivers
a rich description of the future uncertainty. The novelty of our approach is to
combine quantile regression, additive models and state-space models in a unified
framework able to completely characterize the underlying determinants of the
power load consumptions.

Keywords: Additive models; State-space models; Probabilistic load forecasting;
Quantile regression; Variational Bayes.

1 Data

We consider the dataset proposed in the Global Energy Forecasting Compe-
tition 2014 (Hong, et al., 2016), which collects the US power load consump-
tion (load) in megawatt-per-hour (MWh) from January 2005 to December
2011, along with some additional environmental and temporal covariates.
Here we only take into account the variables selected by Galiard, et al.
(2016) to be the most relevant for prediction purposes, that are the at-
mospheric temperature (tempt) in Celsius scale (C°), the smoothed tem-

This paper was published as a part of the proceedings of the 36th Inter-
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2022. The copyright remains with the author(s). Permission to reproduce or ex-
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perature (stempt), given by stempt = 0.05 · tempt + 0.95 · tempt−1, the
day of the year (dayyeart), the day of the week (dayweekt), and a trend
variable (trendt) correcting for possibly non-stationary components. As it
is common in the energy forecasting literature, we proceed by modelling
separately each half an hour of the day, and, in particular, we restrict our
analysis to the time interval 11:30–12:00 a.m. so that to obtain equispaced
daily observations.
Our main goal is to propose a flexible model able to predict the unobserved
future distribution of the power load considering the non-linear effect of
temperature, cycles and trends. In literature, this challenge has been faced
either following a time series approach, for example using SARIMA models
(Hong, et al., 2016) and with a semiparametric regression approach us-
ing GAMs (Galiard, et al., 2016; Fasiolo, et al., 2021). We then combine
these two methods within a quantile regression framework by specifying a
non-Gaussian dynamic linear model written in state-space form, so that to
handle the non-linear effect of the covariates through an additive specifica-
tion and to model the non-stationary trend over time as the realization of
a stochastic latent Markov process.

2 Model and inference

We propose to predict the short-term evolution of the τ -quantile of the
power load consumption through the following Bayesian dynamic linear
model (Yu and Moyeed, 2001)

yt = µt + xT

t β + εt, εt ∼ AL(τ, 0, σ2
ε), t = 1, . . . , n, (1)

where yt is a real response variable (the rescaled power load) observed at
time t, µt is a stochastic trend evolving over time, xt is a d × 1 vector of
exogenous covariates, β is a d× 1 vector of regression parameters and εt is
a independent error component distributed according with an asymmetric-
Laplace (AL) distribution with shape τ ∈ (0, 1), location 0 and scale σ2

ε .
The stochastic trend µt is modelled as a second order continuous random
walk specified through the dynamical linear equation:

µt+1 = µt + δtµ̇t + ηt,
µ̇t+1 = µ̇t + η̇t,

[
ηt
η̇t

]
∼ N2

([
0
0

]
, σ2
η

[
δ3t /3 δ2t /2
δ2t /2 δt

])
, (2)

where µt is the trend level, µ̇t is the trend slope, δt is the length of the
interval spacing two different time-points, which corresponds to δt = 1 when
no missing data are present, and (ηt, η̇t) is a correlated innovation term.
We then assume a diffuse initial distribution for (µ0, µ̇0)

T ∼ N2(0, κI2)
with κ → ∞. Model (2) may be further enriched by exploring different
specifications of the transition equation, as described e.g. by Durbin and
Koopman (2012).
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For the linear predictor xT
i β we assume an additive model specification,

being xT
i β = xT

i1β1+· · ·+xT

iKβK , where each component xT

ikβk can represent
either a fixed linear effect, or a basis expansion describing a possibly non-
linear effect of some covariates on the response. Both xik and βk are dk×1
vectors, so that d = d1 + · · ·+ dk.
To complete the Bayesian model specification, we assume independent mul-
tivariate Gaussian (N) prior for the regression parameters and conjugate
inverse-Gamma (IG) prior for the scale parameters:

βk|σ2
k ∼ Ndk(0, σ

2
kR

−1
k ), σ2

k ∼ IG(Aβ , Bβ),

σ2
η ∼ IG(Aη, Bη), σ2

ε ∼ IG(Aε, Bε),
(3)

In vector form, we denote β = (βT
1 , . . . , β

T

K)T and σ2
β = (σ2

1 , . . . , σ
2
K)T. Here,

the constants Aβ , Bβ , Aη, Bη, Aε, Bε > 0 are scalar user-specified prior pa-
rameters, as well as Rk is a semi-positive definite matrix determining the
prior conditional dependence structure among the elements of βk.
In particular, we have

xT

t β = f1(tempt) + f2(stempt) + f3(dayyeart) + f4(dayweekt),

where each non-linear function fk(·) = xk(·)Tβk, k = 1, . . . , 4, represents
a cubic B-spline expansion with associated second order differential penal-
ization matrix Rk.

3 Estimation

The posterior distribution of the parameter vector θ = (β, µ, µ̇, σ2
β , σ

2
η, σ

2
ε)

can be inferred in approximated form via mean field variational Bayes
(Ormerod, et al., 2010; Blei, et al. 2017). We thus replace the true posterior
with the factorized density

q(θ) = q(β, µ, µ̇, σ2
β , σ

2
η, σ

2
ε) = q(β, µ, µ̇) q(σ2

β) q(σ
2
η) q(σ

2
ε) (4)

and we minimize the Kullback-Leibler divergence between q(θ) and p(θ|y)
with respect to q(θ) in order to find the optimal approximation. Closed
form coordinate-wise solutions can be easily derived for σ2

β , σ
2
η and σ2

ε ,
that is

q∗(ψ) ∝ exp
{
E−ψ

[
log p(ψ|rest)

]}
(5)

for a generic parameter ψ, with E−ψ(·) denoting the variational expectation
over all the parameters except ψ and p(ψ|rest) begin the full-conditional
density of ψ. Numerical optimization and Kalman filter routines (Durbin
and Koopman, 2012) have to be employed for finding the optimal density
of (β, µ, µ̇) under the constrain that q(β, µ, µ̇) belongs to the family of
multivariate Gaussian distributions.
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The implementation of the joint optimization scheme for all the parameters
in the model thus relies on a semiparametric variational Bayes (Rohde and
Wand, 2019) approach based on the so-called Knowles-Minka-Wand update
(Knowles, Minka, 2011; Wand, 2014).

4 Empirical results

FIGURE 1. Top and middle rows: Marginal effect of temperature, year cycle,
day of the week and long-term trend on the 5 considered quantiles. Bottom
row: one-step-ahead predictions of the load distribution in the period going from
March 1st to December 1st, 2012.

A non-parametric description of the predictive distribution of the power
load can be obtained by estimating several quantile curves and then ag-
gregating the results for approximating the cumulative density function
at a given time point. We then consider the quantiles corresponding to
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τ = 5%, 25%, 50%, 75%, 95% and we use them both to understand how
and how much some variables impact the power load distribution and to
produce point and interval predictions.
Figure 1 shows the marginal effect of temperature, year cycle, day of the
week and non-stationary trend on the load consumption. Moreover, it por-
trays the one-step-ahead forecasts from March to December 2011.
The temperature effect has a classical U-shape profile, with a minimum
of around 20 C°, indicating a low consumption when the temperatures are
moderate. Then, the residual power load increases during summer and falls
during autumn with a cyclic behaviour not explained by the temperature
effect. An almost constant consumption is observed during the weekdays,
with a small growth on Saturday and Sunday. Looking at a long-term
perspective, the load trend was increasing steeply until 2009-2010, when it
flexed to a negative slope for the remaining period.
Comparing heterogeneous quantile curves, some differences arise by divid-
ing the lower from the higher percentile levels, respectively τ = 5%, 25%,
50% and τ = 75%, 95%. This second group is characterized by a sharper U-
profile in the temperature variable, a flatter cyclic fluctuation and a higher
mean level in the day effect. Symmetric interpretations hold for the other
group. Excluding the very first and last observed months, for which the
estimates are more variable, no significant differences emerge in the trend
dynamics.
The quality of the predictions is assessed by comparing the theoretical and
observed quantile level, respectively, τ and τ̂ . The later is estimated by
averaging the number of occurrences in which yt ≤ µ̂t + xT

y β̂. For all the
considered quantile levels there is no significant difference between τ and τ̂ ,
suggesting a good ability of the model to recover the conditional quantile
of the power load.

TABLE 1. Theoretical and observed quantile level, respectively, τ and τ̂ .

Theoretical Observed Std.Dev. C.I. (95%)

0.05 0.0467 0.0118 (0.0274, 0.0661)
0.25 0.2555 0.0244 (0.2155, 0.2954)
0.50 0.4891 0.0279 (0.4433, 0.5349)
0.75 0.7664 0.0237 (0.7276, 0.8051)
0.95 0.9470 0.0125 (0.9265, 0.9676)
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Abstract: The normalized inverse Gaussian random discrete distribution has
been deeply investigated in Bayesian nonparametrics as one of the possible
tractable alternatives to the Ferguson-Dirichlet prior and to its two-parameter
Pitman-Yor extension. Here we devise an easy to sample representation of its
first two size-biased picks and discuss a potential application to prior calibration.
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1 Introduction

The normalized Inverse Gaussian random discrete distribution arises by
normalizing the ranked jumps of a 1/2-stable subordinator, conditioning
on the total sum and mixing with the corresponding exponentially tilted
density (see e.g. Pitman, 2003, Cerquetti, 2007). It has been extensively
investigated in Bayesian nonparametrics as a tractable alternative to the
Ferguson-Dirichlet prior since admits an explicit definition in terms of its
finite dimensional distributions and a closed form expression of the weights
appearing in the Gibbs-product form of the distribution of the correspond-
ing exchangeable random partition. Preliminary results for its implemen-
tation in hierarchical mixture modelling are in Lijoi et al. (2005), a stick-
breaking representation is in Favaro et al. (2012), slice sampling for mixture
models is in Favaro and Walker (2012) and asymptotic approximations for
the prediction rules of the corresponding Chinese restuarant process and
for the prior on the number of clusters are respectively in Arbel and Favaro
(2021) and in Bystrova et al. (2021).
Here we devise an easy to sample representation of the first two size-biased
picks from the normalized Inverse Gaussian which provides a convenient

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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alternative to those presented in Favaro et al. (2012) and Arbel and Favaro
(2021). We also illustrate an application to prior calibration.

2 Size-biased sampling of the normalized Inverse
Gaussian prior

Random discrete distributions (r.d.d) can be defined by specifying the dis-
tribution of their random atoms according to different ordering. Atoms can
be described in exchangeable random order, in decreasing order or in size-
biased order. Given the collection (Pj)j≥1 of the ranked atoms of a r.d.d. P ,

its size-biased permutation corresponds to the sequence (P̃j)j≥1 where P̃j

denotes the random size of the jth atom discovered in the process of ran-
dom sampling from P . In particular the first size-biased pick from P is the
random variable P̃1 taking values Pj with probability Pj , for j = 1, 2, . . . .
The following representation, which follows from results in Aldous and
Pitman (1998), holds for the first and second size-biased picks of the nor-
malized Inverse Gaussian prior.

Proposition 1. Let X1 and X2 be independent standard Normal random
variables and T an inverse Gaussian random variable of parameter (v−1, 1)
with density

f(t;µ, 1) =

√
1

2πt3
exp

(
− (t− v−1)2

2tv−2

)
, (1)

then the first and the second size-biased pick from a normalized Inverse
Gaussian random discrete distribution of parameter b = v2 admit the fol-
lowing representation

P̃1
d
=

S1

T−1 + S1
(2)

and

P̃2
d
=

T−1

T−1 + S1
− T−1

T−1 + S2
(3)

for Sj :=
∑j

i=1 X
2
i .

While the densities of both (2) and (3) can be hard to handle analytically,
sampling from them reduces to sampling standard Gaussian and inverse
Gaussian variates and can be easily done e.g. in R (see packages VGAM or
copula).

3 Application

The availability of the prior distribution induced on the number of clusters
is central in Bayesian nonparametrics for prior specification and calibration.
The closed form expression for the prior distribution of the number of
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species Kn observed in a sample of size n is well-known for any member
of the Gibbs-type family, to which the normalized Inverse Gaussian prior
belongs, and corresponds to

Pr(Kn = k) = Vn,kS
−1,−α
n,k . (4)

Nevertheless, despite both the exchangeable Gibbs weights Vn,k and the

generalized Stirling numbers S−1,α
n,k may be available in closed form, like e.g.

for the Inverse Gaussian case, they are combinatorial in nature and usually
computationally intensive to handle, becoming intractable for moderate
and large sample size.

0 20 40 60 80 100

15
20

25
30

35
40

n=50

v

EK
n

0 20 40 60 80 100

20
30

40
50

60
70

n=100

v

EK
n

0 20 40 60 80 100

40
60

80
10

0
12

0

n=200

v

EK
n

0 20 40 60 80 100

50
10

0
15

0
20

0

n=400

v

EK
n

FIGURE 1. Expected number of clusters in samples of size n=50, 100, 200, 400,
for increasing values of the parameter v of the normalized Inverse Gaussian prior
obtained by Monte Carlo sampling from the first size-biased pick. Total system
time for the four plots was 16 seconds with 30.000 Monte Carlo iterations.

Several solutions based on statistical approximations of both P or the Vn,k

weights have been proposed. See Bystrova et al. (2021) for a comprehen-
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sive account. Here for the normalized Inverse Gaussian prior we propose
a solution based on working directly with the moments sequence of Kn,
exploiting their representation in terms of the size-biased permutation of
the prior’s atoms. A comprehensive treatment of this approach, providing
Monte Carlo solutions to several diversity indicators estimation, will be
covered in a forthcoming paper (Cerquetti, 2022). As an example here we
show that first and second size-biased picks are enough to obtain fast and
accurate evaluation of the behaviour of expectation and uncertainty of the
number of clusters for different values of the Inverse Gaussian parameter at
different sample sizes. Figure 1 shows the behaviour of E(Kn) for increasing
values of v and sample sizes n = {50, 100, 200, 400}.
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Abstract: We propose a new adaptive penalty for smoothing via penalized
splines. The new form of adaptive penalization is based on penalizing the dif-
ferences of the coefficients of adjacent bases using penalties based on the L1

norm. This makes possible to estimate curves with varying amounts of smooth-
ness. Comparisons with respect to some competitors are presented.
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1 Introduction

The use of splines in statistical modelling (Eilers and Marx, 1996) has
undergone a significant increase in real data analyses: for instance, in just
five years, the number of R packages using splines has tripled (Perperoglou
et al., 2019). However when the underlying relationship exhibits somewhat
complex shapes, better results could be obtained by varying the amount
of smoothness of the fitted curve, namely via adaptive smoothing. In this
work we present a simple approach exploiting the properties of nonconvex
penalties and present some comparisons via a simulation study.

2 Splines, B-splines and P-splines

Let f(x) be the unknown but smooth function relating the continuous
covariate x and the conditional expected value of the response Y |x via
the link function g(·), namely E[Yi|xi] = f(xi). The smooth function is
expressed via a B-spline basis with specified degree and equally spaced
knots,

f(xi) =
K∑

k=1

bkBk(xi) = B(xi)
T b,

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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where the Bks are the bases and bks the relevant coefficients. For the re-
sponse values {yi}1,...,n, and assuming for the sake of simplicity a contin-
uous response with identity link, the objective to be minimized is the well
known least square

∑
i(yi −B(xi)

T b)2. To bypass the issues related to the
selection of the number and location of knots (affecting the basis dimension
K), a penalty is added to to the fidelity term to be optimized, leading to
the penalized objective

∑n
i=1(yi − B(xi)

T b)2 + λ
∑

k(∆
dbk)

2, where λ is
the tuning parameter determining how the curve has to be smoothed. The
larger λ, the smoother the fitted curve, and the optimal value is usually
selected by CV, AIC or BIC.
However, a unique and constant λ in the penalty implies that the amount
of smoothing is fixed. Sometimes, such constant smoothing can lead to
undesirable fits.

3 The proposal: P-spline using L1 penalty

To allow adaptive smoothing we propose to penalize the coefficient differ-
ences ∆dbk via an ‘unbiased ’ nonconvex penalty, such as SCAD (Fan and Li,
2001) or MCP (Zhang, 2010). Unlike the naive lasso, such as

∑
k |∆dbk|, the

‘unbiased ’ penalties SCAD or MCP allow to alleviate bias in the non-null
coefficients while keeping to zero the smallest (in absolute value) ones. By
indicating with p

(
|∆dbk|

)
a specified unbiased penalty (MCP or SCAD),

the objective can be written

n∑
i=1

(yi −B(xi)
T b)2 + λ

∑
k

p
(
|∆dbk|

)
. (1)

The L1 penalty is not differentiable and therefore the usual Newton-like
algorithms cannot be used. Very efficient algorithms do exist, but alterna-
tively the local quadratic approximation (Fan and Li, 2001) allows to attain
the final solution by optimizing iteratively the following objective

n∑
i=1

(yi −B(xi)
T b)2 + λ

∑
k

wk

(
∆dbk

)2
, (2)

namely a weighted ridge penalty with weights wk depending on the penalty
derivative evaluated at the previous solution b̃, i.e. wk = p′(|∆db̃k|).
In addition to the well known SCAD and MCP, we also consider a new ‘un-
biased’ nonconvex penalty, the so-called CDF to be discussed in a different
paper presented in this workshop (Cuntrera et al., 2022).
Regardless of the penalty (SCAD, MCP or CDF), the optimal λ can be
selected by CV, BIC/AIC or iteratively via the algorithm proposed by
Schall (1991). Owing to weights wk, even a unique λ value can lead to vary
the amount of smoothing.
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4 Simulation study

We contrast our proposal (using the non-convex SCAD, MCP, and CDF
penalties in (2)) with the spatially-adaptive P-splines (SOP) of Rodŕıguez-
Álvarezez et al. (2019), and the traditional P-splines with constant smooth-
ing. We use the Doppler function as the true signal µi, that is a typical
example in the literature on adaptive smoothing, and generate yi = µi+σϵi
where xi = i/n, n = 400, ϵi ∼ N(0, 1), and different values of σ in (0.05,
0.25) to assess how performance varies as noise increases. For all settings,
we carried out 300 trials. Performance is evaluated by means of the Mean
Integrated Squared Error (MISE) measuring the difference between true
µi and fitted µ̂i. For all methods, we use a third-degree B-spline with 50
bases and penalty based on the 3rd order differences and λ selected via the
Schall algorithm separately for each method. SOP was implemented via
the R package SOP version 1.0.
As shown in Figure 1, the MISE curve of classical P-spline, i.e. not account-
ing for adaptive smoothing is the highest. Among the adaptive smoothing
strategies, MCP/SCAD (indistinguishable results, red line) perform bet-
ter than SOP (green line) when the signal-to-noise is lower. Interestingly,
adaptive smoothing via the new CDF penalty (light blue) performs the best
over all the σ values tested, expect for σ = 0.05 where the SCAD penalty
performs quite slightly better. At higher values of σ, the CDF penalty and
SOP tend to have the same values of MISE.
The fitted curves averaged across the 300 simulations are reported for the
scenario with σ = 0.15 in the left panel of Figure 1 along with the true
signal (black line). It is worth noting the curve obtained using constant
smoothing shows evident undersmoothing problems that guarantee good
fits only on the right side of the penalty. Curves fitted by using adaptive
smoothing show a remarkable improvement: they improve the results on the
left side, while maintaining a good fit on the right side. The CDF penalty
seems closer to the true signal, especially in the first part.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

x

SCAD
SOP
P−spline
CDF

0.05 0.10 0.15 0.20 0.25

0.
5

1.
5

2.
5

3.
5

σ

M
IS

E

SCAD
SOP
P−spline
CDF

FIGURE 1. Simulation results. Left panel: True signal (black line), data (with
σ = 0.15) and fitted curves (averaged across replicates). Right panel: MISE for
different method and σ.

412



Cuntrera and Muggeo

5 Conclusion

We have presented a new approach for dealing with adaptive P-splines for
smoothing. Our proposal relies on the non-convex penalties, including the
new CDF penalty, which favour adaptive smoothing even with a unique
tuning parameter value. The simulation results show that the obtained re-
sults are very competitive, and sometimes even better than the alternative
SOP method. Implementation in GLM is straightforward, but a possible
more challenging task is extension to multidimensional smoothing via ten-
sor product of bases.
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Abstract: Motivated by the analysis of crime data in Bucaramanga (Colombia),
we propose a spatio-temporal Hawkes point process model adapted to events liv-
ing on linear networks. We first consider a non-parametric modelling strategy, for
both the background and the triggering components, and then we include a para-
metric estimation of the background based on covariates, and a non-parametric
one of the triggering effects. Our network model outperforms a planar version,
improving the fitting of the self-exciting point process model.

Keywords: Covariates; Crime data; Hawkes processes; Linear networks; Spatio-
temporal point processes.

1 Introduction

Point processes are stochastic processes defining a natural and convenient
formal tool to describe the process of discrete events that occur in a continu-
ous space, time or a space-time domain; spanning many scientific branches,
examples of application are forest fires, crimes, earthquakes, diseases, tree
locations, animal locations or communication network failures.
A number of papers have dealt with the analysis of crime data using self-
exciting point process theory. In particular, several papers have proposed
a Hawkes-type point process modelling framework for crime data, as this
type of data is usually clustered. As crime events are naturally constrained
to occur on the streets structure of a city, in this paper, we advocate the
use of the theory of spatio-temporal point processes on linear networks.
In detail, we analyse robbery crimes occurred in the city of Bucaramanga
(Colombia) in 2018.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
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FIGURE 1. (a) Armed robberies (in red) in Bucaramanga, and in the city’s
downtown (in blue). In black, the segments of the streets of Bucaramanga city. (b)
Some socio-economic, demographic and environmental spatial covariates used.

The proposed model includes external covariates in the purely spatial back-
ground component. We find that our proposed model, accounting also for
some spatial covariates in the background component, fits better than the
planar counterpart on the Euclidean space, allowing us to better interpret
the results.
The paper is structured as follows. In Section 2 we introduce the proposed
spatio-temporal Hawkes models. In Section 3 we present the data and carry
out model fitting and diagnostics. Section 4 contains the conclusions.

2 A Hawkes model on linear networks with covariates

Point processes can be formally specified in several ways, for instance, by
considering the joint distribution of the counts of points in arbitrary sets
or by defining a complete intensity function. To model events that are
clustered, self-exciting point processes are often used. Examples include
Hawkes models (Hakwes, 1971). The conditional intensity function of a lin-
ear self-exciting process is defined as the sum of two non-negative functions:
a background that describes the large-scale variation of the intensity, and
a triggered component, which describes its small-scale variation due to the
interaction with the events in the past.
We refer to a self-exciting model, following the semi-parametric specifica-
tion proposed by Zhuang and Mateu (2019) for a spatio-temporal Hawkes
process. Therefore, the first considered model (Model 1) is as follows

λ(t, x, y) = µ0µt(t)µw(t)µb(x, y)+A

∫ t−

−∞

∫ ∫
X

g(t−s)h(x−u, y−v)N(du×dv×ds),

(1)
where we estimate the two relaxation coefficients A and µ0, normalise to 1
the average values of µt(t), µw(t) and µb(x, y), and define the probability
density functions g and h.
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TABLE 1. Comparative results for the three fitted models

µ̂ Â log(L)
Model 1 0.204 0.639 -706.47
Model 2 0.292 0.014 -353.35
Model 3 0.085 0.016 -319.70

Because of the nature of data, spatio-temporal point processes on linear net-
works are then referred to. Formally, a linear network L = ∪n

i=1li ⊂ R2 is
commonly taken as a finite union of line segments li ⊂ R2 of positive length.
The distance between two locations in the network L is usually computed
by the shortest-path distance dL which is the minimum of the length of all
possible paths between the two points. To fit (1) on the underlying spatial
network, the main issue is to chose estimators for the spatial components
µ̂b(x, y) and ĥ(x−u, y−v), taking properly into account the underlying net-
work structure. The second spatio-temporal Hawkes process model on the
linear network L that we propose (Model 2) has the same specification of
(1), but replacing the functions µb(·, ·) and h(·, ·), by µL(·, ·) and hL(·, ·), re-
spectively. These are computed using the 2D convolutional Gaussian Kernel
of Rakshit et al. (2019), defined as λ̂(u) = 1

cL(u)

∑n
i=1 κ(u− xi), u ∈ L,

with κ a bivariate kernel function, that is, a probability density on R2.
Model 2 can be extended by including external spatial covariates in µL(x, y).
This last specification gives rise to Model 3, that is:

λ(t, x, y) = µ0µt(t)µw(t)µL(x, y,βback)+A

∫ t−

−∞

∫ ∫
L

g(t−s)hL(x−u, y−ν)N(du×dν×ds),

(2)
where βback denotes the parameters associated to the spatial covariates
Z(x, y) included in the model. As all the available covariates are continuous
in space, they can be included linearly by basis functions.
Inference is carried out by the Estimation-Maximization (E-M) algorithm.

3 Model fitting to crime data and diagnostics

We analyse 2671 armed robberies in the city of Bucaramanga, Colombia,
in 2018. We first fit Model 1 and then our proposed extensions (Model 2)
and (Model 3) to the data. Figure 1(a) displays the armed robberies for the
entire city of Bucaramanga (red) and its downtown (blue) in 2018. In this
study, we focus on analysing the latter subregion. We used all available 36
variables, including socio-economic factors, demographic aspects, environ-
mental conditions, and geographical covariates. Figure 1(b) displays 6 of
them. We estimated the relaxation coefficients µ̂ and Â through a 40-loops
iterative algorithm. We also computed the log-likelihood to assess the fit of
the three space-time point process models. Table 1 reports the estimates of
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FIGURE 2. Spatial background rate: (a) Model 1, (b) Model 2 and (c) Model 3.

the relaxation coefficients and the corresponding log-likelihood. Â changes
noticeably from specification (Model 1) to specifications (Model 2) and
(Model 3): in the former, almost 64% of the crimes are triggered, while
the latter models suggest that only 1.4% and 1.6% (respectively) of armed
robberies are induced by previous crimes. The log-likelihood shows that our
models fit better the armed robberies data. The spatial background rates
of the fitted models come in Figure 2. Note that other diagnostic tools (e.g.
transformed times and smoothed raw residuals) would further reinforce the
model selection, but they are not shown here for reason of space.

4 Conclusions

In this paper, we analysed robbery crimes as events of a spatio-temporal
point pattern living on a linear network structure. We first fitted a Eu-
clidean planar model following and further proposed an extension of that
model in order to take into account the linear network, through which we
are also able to include the dependence on external covariates rightly con-
strained onto the spatial support of the road network, finding that our
proposed models on the network achieve a much better fit when compared
to the planar counterpart. Therefore, the current research paves the way
for future developments in this promising direction, such as the inclusion
of individual-related covariates into the triggering component.
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Abstract: A bivariate model for discrete and continuous responses is proposed in
which joint distribution is constructed via the conditional approach. It is assumed
that the discrete response follows the Bernoulli distribution and the continuous
response, given the discrete outcome, follows the exponential distribution. Fur-
thermore, the marginal means are related to the covariates by link functions
using parametric and/or nonparametric predictors and a dependency structure
between the responses is inserted into the model via the conditional mean. Esti-
mation methods using P-Splines, diagnostic analysis and a simulation study are
presented. Finally, this model is used in a real data set.

Keywords: Bivariate regression models; Conditional approach; P-Spline.

1 Introduction

It is common situations in which two responses associated with the same
individual are simultaneously observed. In these cases the intrinsic relation-
ship between the two variables should be considered in the analysis. In this
context, bivariate models, which allocate a dependent structure between
the two responses, should be taken into account.
Bivariate distributions can be built using different methods, including the
mixing method, compounding method and via copula. Another direct way
to built bivariate distributions is using the conditional approach, where
the joint probability density function (pdf) is given by the product of a
marginal pdf and a conditional pdf. In this approach, the variable asso-
ciated with the marginal fdp is seen as the primary response while the
conditioned variable is considered as the intermediate variable.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Models for bivariate discrete and continuous outcomes, constructed by the
conditional approach, are discussed in Fitzmaurice and Laird (1995), Yang
et al. (2007) and more recently in de Oliveira et al. (2019), which pro-
posed a general class of models for discrete and/or continuous responses,
fitting the Bernoulli-exponential parametric model, a particular case of the
class, to real data set. In this case, the predictor is formed only by linear
terms, which is not always the most appropriate. Thus, in this paper, the
Bernoulli-exponential model is extended, allowing parametric and/or non-
parametric predictors. In this semiparametric context, the P-Spline tech-
nique is used, adapting to the bivariate context.

2 Bernoulli-exponential semiparametric model

It is assumed that Yi ∼ Bernoulli(µiY ) and Xi|Yi = yi ∼ Exponencial( 1
αi
),

where the dependence between the response variables is determined by
the conditional mean αi = E(Xi | Yi = yi). This mean is related to µiX

(marginal mean of Xi), to Yi (discrete response), to µiY (marginal mean
of Yi) and to γ (parameter included in the model, which may be a measure
of association between the response variables), by a linear or nonlinear
function, that is, αi = h(yi, µiY , µiX , γ). Further, covariates are available
and are related to the marginal means by g1(µiY ) = ηiY and g2(µiX) =
ηiX , where g1(·) and g2(·) are monotonic differentiable link functions,

ηiY = β0 + β1zi1 + · · ·+ βk−1zik−1 + s1(zik) + s2(zik+1) + . . .

+sp−k(zip) and

ηiX = δ0 + δ1ti1 + · · ·+ δd−1tid−1 + u1(tid) + u2(tid+1) + . . .

+uq−d(tiq),

with zi1, zi2, . . . , zip, ti1, ti2, . . . , tiq, a set of covariates, i = 1, 2, . . . , n; β0,
β1, . . . , βk−1, δ0, δ1, . . . , δd−1 the unknown parameters and s1(.), s2(.), s3(.),
. . . , sp−k(.), u1(.), u2(.), . . . , sq−d(.) smooth functions.

2.1 Estimation method

When the responses are independent, each marginal model can be seen
as a generalized additive model (GAM) and the P-Spline smoothers can
be used to fit all smooth components simultaneously (Marx and Eilers,
1998). In this case, the GAM estimation is reduced to generalized linear
regression context with a penalized version of the log-likelihood that at-
taching a penalty on B-Spline coefficients. Then, we extend the use of the
P-Spline technique to the Bernoulli-exponential bivariate model in which
both predictors are given in the context of generalized additive models.
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Each smooth function is represented as a linear regression, using B-Spline
bases. Without loss of generality, assuming that BY and BX are non-
singular bases and aY and aX the vectors of regression coefficients associ-
ated with BY and BX, we have

ηY = 1β0 + z1β1 + · · ·+ zk−1βk−1 +B1Ya1Y + · · ·+Bp−kYap−kY

= BYaY, and

ηX = 1δ0 + t1δ1 + · · ·+ td−1δd−1 +B1Xa1X + · · ·+Bq−dXaq−dX

= BXaX,

with ηY = (η1Y , η2Y , . . . , ηnY )
⊤, ηX = (η1X , η2X , . . . , ηnX)⊤, BY = (1 :

z1 : z2 : · · · : zk−1 : B1Y : B2Y : · · · : Bp−kY), BX = (1 : t1 : t2 : · · · :
td−1 : B1X : B2X : · · · : Bq−dX), aY = (β0, β1, β2, . . . , βk−1,a1Y

⊤,a2Y
⊤,

. . . ,ap−kY
⊤)⊤ and aX = (δ0, δ1, δ2, . . . , δd−1,a1X

⊤,a2X
⊤, . . . ,aq−dX

⊤)⊤.
The penalized log-likelihood function of aY,aX and γ, may be written as

ℓ∗(aY,aX, γ | x,y,Z,T) = −
n∑

i=1

logαi −
n∑

i=1

xi

αi
+

n∑
i=1

yilogµiY

+
n∑

i=1

(1− yi)log(1− µiY )

−1

2
aY

⊤PYaY − 1

2
aX

⊤PXaX, (1)

with µY = g−1
1 (BYaY) and µX = g−1

2 (BXaX). The smoothing para-
meters λ1Y , . . . , λp−kY , λ1X , . . . , λq−dX are chosen using generalized cross-
validation (GCV) and are inserted in the penalty matrices

PY = block diagonal(0, . . . , 0, λ1Y P1Y, . . . , λp−kY Pp−kY) and

PX = block diagonal(0, . . . , 0, λ1XP1X, . . . , λq−dXPq−dX).

The maximum likelihood estimation is obtained by maximizing the Equa-
tion (1). A diagnostic analysis is presented considering the randomized
quantile residual individually in each of the marginal models.

3 Simulation study

A simulation study is conducted in order to examine and compare the
performance of three models:

� M1: Bernoulli-exponential model that assume independence between
responses, that is, marginal models;
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� M2: Bernoulli-exponential model with linear predictors;

� M3: Bernoulli-exponential model with semiparametric predictors.

We simulate data with samples sizes n = 100, 200 and 400 and for all
n values, we generate N = 100 samples of n observations. The adopted
predictors are given by

ηiY = 3.2 + 1.3× Stayi +
√
Agei and

ηiX = 6.7 + 3×Agei + 2× cos(Stayi),

where Stay and Age are covariates included in the real dataset, described
in the next section. We adopt a dependency structure

αi =
0.4yiµiX

(1 + µiY (−0.6))
.

The criterion to assess the efficiency of the P-Spline is the Mean Square
Error (MSE). Our simulation results revealed that the M3 is more flexible
in fitting data with dependent responses and nonlinear predictors.

4 Application

A real data set containing information related to admissions of patients
provided by managed care plans is analyzed by using the three Bernoulli-
exponential models (M1, M2 and M3). The data set is composed of in-
formation on 308 admissions. The total cost of care for each patient during
hospitalization and the use or not of the intensive care unit are adopted
as continuous and discrete response variables, respectively. The set of co-
variates includes length of stay (in days), age, patient’s status upon arrival
at the hospital and requested medical specialty, according to the patient’s
problem.
Patient’s status is categorized as “Not Severe” and “Severe” and requested
medical specialty is categorized as “CRD-S” (Circulatory, Respiratory, or
Digestive system), “P” (pregnancy, childbirth, or genital organs), “Tumor”
(Cancer) and “Other”.
In Figure 1 are shown qqplots with envelope, considering the quantile
residuals, for each of the marginal models, in M1, M2 and M3 models.

5 Conclusions

The proposed Bernoulli-exponential semiparametric model is more flexible
since it encompasses a variety of different predictors. Using a simulation
study in some predetermined scenarios we can note that the fitted model
is satisfactory, especially for situations where the predictors are not linear.
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FIGURE 1. qqplots with envelope considering the quantile residuals. (a), (c), and
(e): M1, M2 and M3 models, respectively - Yi; (b), (d), and (f): M1, M2 and
M3 models, respectively - Xi | Y i = yi.
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Abstract: Composite likelihood has shown promise in settings with large num-
ber of parameters p due to its ability to break down complex models into simpler
components, even when the full likelihood is intractable. However, there does
not seem to exist agreement on how to construct composite functions that are
computationally efficient and statistically sound when p is allowed to diverge. We
present a flexible method to select sparse composite likelihoods via a criterion
representing the statistical efficiency of the implied estimator and an L1-penalty
discouraging the inclusion of too many sub-likelihood terms. The theoretical prop-
erties of the proposed procedure are illustrated through simulation studies.

Keywords: Pseudo-likelihood inference; High-dimensional parameter; Sparsity-
inducing penalization.

1 Introduction

Let Y be a d × 1 random vector with distribution f(y; θ) indexed by the
parameter θ ∈ Θ ⊆ ℜp. Suppose the full d-variate f(y; θ) is hard to specify
or compute but we can identify p distributions fj(y; θ) (j = 1, . . . , p) de-
fined on low-dimensional subsets of Y , such as marginals Yj , pairs (Yj , Yk),
or conditionals Yj |Yk = yk (j ̸= k). Given independent observations
Y (1), . . . , Y (n), the composite likelihood (CL) estimator maximizes the cor-
responding log-likelihood function (Besag, 1975)

ℓ(θ;Y (1), . . . , Y (n)) =

p∑
j=1

ℓj(θ;Y
(1), . . . , Y (n)) , (1)

where ℓj(θ;Y
(1), . . . , Y (n)) =

∑n
i=1log fj(Y

(i); θ) is the sub-likelihood for
the jth data subset. It is well known that the CL estimator has the same
first-order properties as maximum likelihood (ML) (Varin et al., 2011).

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Although the CL framework naturally suits problems where the parameter
dimension p can diverge with the sample size n, how to select the sub-
likelihood terms forming (1) in this setting (Lindsay et al., 2011) remains
unclear. Such a selection is crucial since it determines both statistical prop-
erties and computing cost of the CL estimator (Cox and Reid, 2004; Lindsay
et al., 2011; Huang et al., 2020); it is also related to model selection, with
the two tasks coinciding when each sub-likelihood contains a distinct ele-
ment of θ. Without any form of selection, the accuracy of CL estimators is
found to deteriorate as the data dimension grows when the low-dimensional
data subsets are sufficiently correlated (Cox and Reid, 2004).

2 Selecting sparse composite likelihood functions

Let θ = (θ1, . . . , θp)
T be sparse, i.e. with many zero elements, and p be

allowed to grow with the sample size n. The marginal scores are defined by
uj(θj ; y) = ∂ log fj(y; θj)/∂θj (j = 1, . . . , p), and u(θ; y) = {u1(θ1; y), . . . ,
up(θp; y)}T. We assume here that each sub-likelihood depends only on one
single θj , but the approach is also valid if ℓj(θ) depends on a finite num-
ber of parameter components. In order to reduce the model dimension by
dropping all the zero elements of θ while estimating the rest, we use the
sparse CL estimator θ̂ with jth component θ̂j = θ̃jI(ŵj ̸= 0), where θ̃j is
the marginal estimator

θ̃j =

{
θj : 0 =

n∑
i=1

uj(θj ;Y
(i))

}
(j = 1, . . . , p) ,

and ŵ = (ŵ1, . . . , ŵp)
T is obtained by minimizing the penalized objective

d̂λ(w) =
1

2
wTĈw − wTdiag(Ĉ) +

λ

n

p∑
j=1

|wj |
θ̃2j

, (2)

for some constant λ ≥ 0. Here diag(Ĉ) denotes the diagonal vector of
any consistent estimator Ĉ of the p × p score covariance matrix C(θ) =
var{u(θ;Y )} = E{u(θ;Y )u(θ;Y )T}, for instance its empirical counterpart
Ĉ =

∑n
i=1 u(θ̃;Y

(i))u(θ̃;Y (i))T/n.
Sparse sub-likelihood selection occurs through the minimization of the con-
vex objective (2): the jth sub-likelihood ℓj(θ) is included in the CL function
if ŵj ̸= 0, else ℓj(θ) is dropped and the corresponding parameter estimate

is set as θ̂j = 0 (j = 1, . . . , p). The selected CL function is interpreted as
one that maximizes statistical efficiency given a desired level of sparsity.
Indeed, when λ = 0 the objective d̂0(w) equals the finite-sample optimal-
ity criterion to find minimum variance estimators for unbiased estimating
equations (Heyde, 2008, Ch. 2). The last term in (2) is a sparsity-inducing
penalty discouraging overly complicated CL functions. The geometric prop-
erties of the L1-penalty imply that several elements in ŵ are exactly zero
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TABLE 1. Estimated number of selected parameters p̂∗, true positive probabil-
ity (TPP%), true negative probability (TNP%) and false discovery probability
(FDP%) for the coefficients of the p-variate probit regression Yj = I(Zj ≥ 0),
given Z ∼ Np(µ,Σ) where µj = 0.1 + θjx with p = 100 and p∗ = 25 nonzero θjs.

{Σ}jk = 0 {Σ}jk = 0.5

λ p̂∗ TPP% TNP% FDP% p̂∗ TPP% TNP% FDP%

1.170 44.482 99.4 73.8 43.7 26.484 92.4 95.5 11.4
2.107 35.487 99.4 85.8 29.5 22.766 86.6 98.5 4.4
3.796 28.839 99.3 94.6 13.5 19.956 78.9 99.7 0.9
6.840 25.565 99.0 98.9 3.0 17.354 69.2 99.9 0.1
12.323 24.597 98.1 99.9 0.2 15.117 60.4 100.0 0.0

for sufficiently large values of λ, which also induces sparsity in the estima-
tor θ̂. The adaptive penalty (Zou, 2006) ensures consistent model selection
as sub-likelihoods associated with θ̃js closer to zero are more penalized. Yet
the fact that this penalty acts on the coefficients wjs rather than on the
parameters θjs enables to separate the task of model selection from that of
estimation. So, differently from usual penalized CL procedures (Xue et al.,
2012; Gao and Carroll, 2017), the selected estimating equations stay unbi-
ased and lead to consistent estimators conditionally on correct selection.

3 Simulation studies

The consistency of our strategy can be illustrated via Monte Carlo exper-
iments. Due to space constraints, we report here partial results for sparse
location estimation based on 2500 simulated samples of size n = 250.
Setting 1: p-variate normal model Y ∼ Np(θ,Σ) with p = 100. The mean
vector θ has p∗ = 25 nonzero elements and Σ is such that {Σ}jj = 1 for
all j and {Σ}jk ∈ {0, 0.5} (j ̸= k). Setting 2: p-variate probit regression
with p = 100. The jth binary response Yj = I(Zj ≥ 0) (j = 1, . . . , p)
is generated based on Z ∼ Np(µ,Σ) where µj = 0.1 + θjx, with nonzero
p∗ = 25 probit coefficients, Σ as in Setting 1, and x normal covariate.
Estimates of the true positive probability TPP=#{j : θ̂j ̸= 0, θj ̸= 0}/p∗,
true negative probability TNP=#{j : θ̂j = 0, θj = 0}/(p − p∗) and false

discovery probability FDP=#{j : θ̂j ̸= 0, θj = 0}/p∗ are given in Table 1
for Setting 2, along with the average estimated parameters p̂∗ at five val-
ues of λ. The sparse combination of CL scores exhibits remarkable model-
selection properties in terms of type I error (FDP) and power (TPP), even
if there exists correlation among scores. For varying p̂∗, Figure 1 shows the
efficiency of the sparse CL estimator compared to that of the unattainable
oracle ML which estimates the nonzero parameters only and sets to zero
the others. With uncorrelated scores the relative efficiency peaks at the true

425



Di Caterina and Ferrari

0 25 50 75 100 0 25 50 75 100
0

0.2

0.4

0.6

0.8

1

p̂
*

R
el

at
iv

e 
ef

fic
ie

nc
y

FIGURE 1. Estimated relative efficiency of the sparse CL estimator versus the
average selected parameters p̂∗. The trajectories for Setting 1 (left panel) and
Setting 2 (right panel) correspond to uncorrelated (solid) and correlated (dashed)
scores. The vertical line at p∗ = 25 marks the true number of nonzero parameters.

p∗=25, very close to one in Setting 1. If all p=100 scores are correlated, as
expected, estimation accuracy is hindered by a less reliable selection; yet
efficiency remains high, with maximum reached after p∗ in both settings.
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Abstract: We describe a joint hierarchical Bayesian model for regional and
country-level per-capita potassium and sodium intake. The model is fit to data
collected from 137 separate studies pertaining to 52 countries. Extending this
joint Bayesian model to include a second level regression for country-level healthy
life expectancy strongly affected some country and region level estimates for
sodium and potassium intake. Accounting for spatial correlation in healthy life
expectancy lessened this effect somewhat. These results raise the question of
whether including such second level regressions (as a form of indirect evidence)
is advised in such analyses when meta-analysis of country-level means or preva-
lences is of primary interest
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1 Introduction

The nature of the causal relationships between sodium intake, potassium in-
take and downstream cardiovascular health are not completely determined.
Recently, Messerli et al. (2021) found a significant, increasing relationship
between country level sodium consumption and healthy life expectancy,
adjusting for GDP and BMI. In this paper, we describe an alternative
Bayesian joint-meta analysis model for potassium and sodium intake. This
model was fit using data collected via literature review at NUI Galway, and
encompassed 137 separate studies over 52 countries within 17 geographic

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).

427



Ferguson et al.

regions, selected based on population estimates for potassium intake. In-
formation on sodium intake and estimates stratified by gender were also
recorded when available, and were model imputed when not. Our primary
hierarchical Bayesian model (see Section 2.1) focused on estimating global,
region-level and country-level per capita intake for sodium and potassium.
In a secondary analysis we extended this model to include a regression of
healthy life expectancy on sodium, potassium and GDP. Here we contrast
the country level sodium and potassium estimates from both approaches
(excluding and including the second level regression). We also compare the
Bayesian estimates for the relationships between sodium, potassium and
healthy life expectancy under differing specifications for the joint model.

2 Models

2.1 Hierarchical model for per-capita sodium and potassium
intake

Estimated sample means, and standard errors, of sodium and potassium
were observed for N=198 observations, 126 of which were specific to males
or females and 72 of which were not gender stratified. Note that there were
only S = 137 studies, each study pertaining to a single country, with some
studies contributing two observations if separate male and female estimates
were given. We write this raw data as:

θ̂Pi ∼ N(θPi , (SE
P
i )2)

θ̂Si ∼ N(θSi , (SE
S
i )

2)
(1)

for i ∈ {1 . . . 198}, θPi and θSi being the true potassium and sodium means

for the sub-populations from which θ̂Pi and θ̂Si were sampled. Standard

errors SEP
i and SES

i are assumed known. While sodium estimates: θ̂Si
were missing for 59 observations, means θSi for these observations were
naturally imputed in fitting the model. The sub-population means (θPi , θ

S
i )

depend both on the proportion of males in the subpopulation, Pi, and a
binary indicator for whether potassium and sodium intakes were assessed
using urinary measurements Di = 0, or via dietary surveys, Di = 1. Both
these factors are assumed to have multiplicative effects on the measured
outcome, denoted for potassium as (1+βP

GPi) and (1+βP
DDi), with similar

notation for sodium:

θPi = [θP,study
s(i) (1 + βP

GPi) + βP
s(i),GPi](1 + βP

DDi)

θSi = [θS,studys(i) (1 + βS
GPi) + βS

s(i),GPi](1 + βS
DDi)

(2)
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θP,study
s(i) and θS,studys(i) are the study-population means for potassium and

sodium in study s(i) ∈ {1 . . . 137}, assuming measurements were made
using urinary assays and on a female-only population. However, note that
equation (2) allows us to convert between expected study-level potassium
and sodium levels if sodium and potassium were measured using dietary
surveys as opposed to urinary assays, and for various mixtures of males
and females. βS

s(i),G and βP
s(i),G are study-level adjustments to the overall

multiplicative gender effect: (1 + βP
GPi)), with the respective adjustments

for sodium and potassium having prior distributions: βS
s(i),G ∼ N(0, σ2

G)

and βP
s(i),G ∼ N(0, τ2G). Potassium means are assumed to be linked using

the following 3 level hierarchy, according to study within country, country
within region and region, with independent sampling at each hierarchical
level, conditional on hyper-parameters. Here, c(s) ∈ {1, ..., 52} represents
the country indicator for study s, and r(c) ∈ {1, ..., 15} the region indicator
for country c.

θP,study
s ∼ N(θP,country

c(s) , τ2study)

θP,country
c ∼ N(θP,region

r(c) , τ2country)

θP,region
r ∼ N(θP , τ2region)

(3)

Within a country, it is assumed that study level sodium and potassium
mean values are linked via a linear model:

θS,studys ∼ N(θcountryc(s) + βcountry
c(s) (θP,study

s − θPc(s)), σ
2
study) (4)

with the country-level θS,countryc and region level θS,regionr means for sodium
intake, and also country-level and region level sodium/potassium slopes
βcountry
c and βregion

r being subject to a similar hierarchical structure:

θS,countryc ∼ N(θS,regionr(c) , σ2
country)

θS,regionr ∼ N(θS , σ2
region)

βcountry
c ∼ N(βregion

r , σ2
β,country)

βregion
r ∼ N(β, σ2

β,region)

(5)

with associated variance parameters at each level.
Global potassium and sodium means were estimated by a weighted average
of the estimated region level means: (θP,region

r , θS,regionr ) using population
totals within each region as weights.
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2.2 Joint model, including regression for Healthy Life
Expectancy

In a secondary analysis the model described above was extended to in-
clude a regression for healthy life expectancy, Yc, at the country level, with
adjustment for country-level per capita GDP, Gc in 2019. Conditional on
region-level effects for healthy life expectancy: ϵr, r ∈ {1, ..., 17}, we as-
sume:

Yc ∼ N(µc, σ
2
HLE) (6)

where

µc = β0 + β1ln(Gc) + β2ln(Gc)
2 + β3θ

P,country
c + β4θ

S,country
c + ϵr(c) (7)

and
ϵr ∼ N(0, ϕ2)

The assumed non-linear relationship between Yc and Gc was selected both
on the basis of plots and theoretical considerations, and provided more
successful adjustment for GDP confounding compared to the linear adjust-
ment assumed by Messerli et al. The variance-parameter ϕ2 > 0 accounts
for within-region clustering of values Yc. Model fitting for the Hierarchical
model described in Section 2.1 and the extended joint models described in
Section 2.2 was performed via Hamiltonian Monte Carlo using RStan us-
ing 10,000 iterations (the first 5,000 as warm-up) of 8 parallel chains using
semi-informative prior distributions for hyper-parameters.

3 Results and Conclusions

Sodium intake is known to be relatively high in Central Europe (Poland,
Hungary and the Czech Republic). Using the model described in Section
2.1, the posterior-mean for estimated per capita sodium intake was 4.5
grams/day, with 95% credibility interval from (3.6g, 5.4g), see Table 1
and Figure 1; above the Global estimate of 3.8g/day (3.47g-4.15g). The
estimate was lower: 4.2g/day (3.5, 5.2), when extending the model as de-
scribed in Section 2.2. Informally, the model (effectively now a joint model
for sodium, potassium and healthy life expectancy) pulls down the sodium
estimates in Central Europe to amplify the correlation between sodium
and healthy life expectancy. This effect is more pronounced if clustering is
not allowed for in the second level regression (ϕ = 0, ln(GDP), ln(GDP)

2
),

where the estimates fall to: 3.6g (3.2g-4.1g). These results raise the
question of whether adding in such indirect information is sensible if the
focus of the analysis is to estimate per-capita sodium and potassium intake.

430



Ferguson et al.

TABLE 1. Comparison of estimates of potassium (β3) and sodium (β4) effects
on healthy life expectancy and estimates for sodium intake in Central Europe
(θS,regionCE ), under 4 differing model specifications:

Hierarchical Joint Model Joint Model Joint Model
Model (ϕ > 0, (ϕ = 0, (ϕ = 0,

ln(GDP), ln(GDP), linear-GDP)

ln(GDP)
2
) ln(GDP)

2
)

β3 NA 2.7 (-2.2,7.9) 4.5 (0.8,9.0) 8.3 (4.2,13.0)

β4 NA 3.8 (-1.3,9.6) 7.8 (3.8,14.3) 9.9 (5.9,14.6)

θS,regionCE 4.5 (3.6, 5.4) 4.2 (3.5,5.2) 3.6 (3.2,4.1) 3.7 (3.3,4.2)

Appropriate inference regarding possible relationships between sodium,
potassium and healthy life expectancy conditional on GDP requires consid-
eration of clustering of life expectancy among neighbouring countries (Joint

Model, ϕ > 0, ln(GDP), ln(GDP)
2
) and is indefinitive regarding whether

such effects exist. Failing to take into account clustering (ϕ = 0, ln(GDP),

ln(GDP)
2
), and inadequate adjustment for confounding by GDP (ϕ = 0,

linear-GDP) lead to stronger but possibly erroneous estimated effects.
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FIGURE 1. The top three plots show estimated posterior distributions for sodium
intake (mg/day) in three Central European countries from the model described
in Section 2.1. In each case, the red line represents estimated mean global sodium
intake and the black line mean regional intake. Data from individual studies (cal-
ibrated to be gender balanced and measured using urinary assays) are shown as
black points. Note the strong country-level clustering within region, which has
shrunk sodium estimates for Hungary to the region average. The bottom 3 plots
represent similar estimates but now from the joint model described in Section
2.2 where spatial clustering within region is not considered (ϕ=0). Posterior dis-
tributions are now much narrower and all three estimates have been shrunken
aggressively. The reason this is happening is to improve the fit of equation (7),
but arguably this gives undesirable estimates for sodium intake. Allowing spatial
clustering in the second level regression (ϕ > 0) somewhat lessens this effect.
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1 Institute of Computing, Università della Svizzera italiana, Lugano, Switzerland

E-mail for correspondence: edoardo.filippi-mazzola@usi.ch

Abstract: A citation network consists of patents citing prior art to which they
are related. One way to study the relation between current patents and their
antecedents is by analyzing the similarity between the textual elements of patents.
Consistently across different ways of computing such measures, it was recently
discovered that the similarity levels have been constantly decreasing since the
mid 70s. Thanks to state of the art tools in Natural Language Processing, we
propose a computationally efficient way to derive the similarity scores across
patents citation pairs. Together with the use of General Additive Models, we
analyzed the potential drivers for this downward trend. We found that the usage
of non-linear models appropriately fits effects that are drastically influencing the
similarity levels. With such corrections in place, the trend in similarity shows a
different pattern than the one presented in previous studies.

Keywords: Citation networks, Neural Networks, BERT; Generalized Linear
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1 Introduction

Patent classes and classification systems have long been used by researchers
to conduct socio-economical studies, concentrating the use of statistical
methods on these classification systems as a reliable source of information.
However, technological relatedness may not be directly related to sharing
the same patent class. Despite the effort of analyzing and defining new mea-
sures of technological relatedness and closeness based on such classes, their
usage can be problematic when patents need to be identified, compared,
or matched with similar technologies. Younge and Kuhn (2015) proposed
a new methodology for determining patent relatedness based on comput-
ing cosine similarities across pairs of citations. This is done by encoding

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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the textual description from such legal documents through a vector space
model. Using more sophisticated methodology, involving the use of neural
networks, Whalen et al. (2020) shows a constant decrease in the average
similarity scores since the mid 70s. Kuhn et al. (2020) suggest that this
may be the result of drastic changes that occurred in the citation gener-
ation process that has made the network of citations less informative and
representative about the technological direction that patents are taking.
Instead, in this manuscript, we claim that this trend is affected by distinct
phenomena that are characterizing the network. The implementation of
models that apply corrections for such circumstances highlights a different
pattern. With this work, we want to emphasize the use of Deep Learn-
ing techniques to compute similarity scores among the textual elements of
patent citations as an appropriate measure of patent relatedness. Previous
techniques have proven to be computationally intensive, especially for mil-
lions of patents. Instead, we propose a ready-to-use approach to compute
similarity scores among patent citation pairs. We investigate through the
use of Generalized Additive Models (GAMs) the potential causes for the
downward trend in the patent similarity scores across years. Making use
of distinct non-linear effects, we correct the similarity curve by properly
reflecting a more informative trend.
This work is organized as follows. Section 2 presents the methodology used
to define the similarity scores as well as the effects we used in the GAM. In
Section 3 we discuss our results and in Section 4 we conclude with a short
summary of our findings.

2 Methodology

2.1 Patent Similarity

Following the path suggested by Whalen et al. (2020), we focus on using
a neural network approach to map the textual elements of patents into
a multi-dimensional space despite the heavy computational requirements
that comes with training a such a deep Machine Learning tool with so many
inputs. One problem of the Whalen et al. (2020) approach is that they use
entire technical descriptions as inputs. Instead, we agree with Choi et al.
(2022) that patents abstracts contain the most useful and basic information
regarding the patenting technology. Given the reduced textual elements
inside the abstracts, we use a pre-trained BERT model to compute the
matrix of embeddings. In this sense, we avoid the main this computational
bottleneck. As such, we encoded approximately 7.5 Millions of patents into
a 300-dimensional space. Through a scheme of lazy loading procedures, we
managed to compute the patent similarity scores for almost 100 million
citation pairs within minutes.
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2.2 General Additive Model

Extending the linear modeling approach of Kuhn et al. (2020), we propose
to model the vector of similarity scores through a Generalized Additive
Model (GAM). With the combination of different linear and non-linear
effects, we use distinct covariates to capture phenomena that have reper-
cussions on the similarity levels.
From our exploratory analysis we note that the average temporal lag of cita-
tions is increasing over time. This suggests that textual similarity might be
negatively affected by the presence of increasing temporal distances among
citations. As such, we modelled through a smoothing term the temporal
lag together with the publication date of the citing patent. Kuhn (2010) re-
sults suggest that legal changes brought an increase in the number of cited
patents. To correct for such inflation we considered the amount of back-
ward citations done by the citing patent via a smooth term. We also argue
that if we need to consider the number of citations, we have to discriminate
between owners types that provide the citation. As such, we distinguish be-
tween companies and private owners by adding three binary effects: Same
c. (if the citing and the cited company coincide), Cited c. and Citing c. (if
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FIGURE 1. GAM estimated coefficients. The intercept estimated coef. is
41.06. Top-left : fixed parametric effects. Top-right : spline on publication date.
Down-left : spline on temporal lag (days). Down-right : spline on backward cita-
tion count (log).
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either the cited or the citing patent is owned by a company). To complete
our analysis, we introduced effects that are directly related to the patenting
technology. This was done by computing the Jaccard index for each hierar-
chical component of the International Patent Classification (IPC) scheme
(section, class, sub-class, main group and sub-group) on each citing pair.

3 Results

A summarized version of the estimated coefficients is shown in Figure 1. The
model was fitted with deviance explained of 18%, which is an important
increase from previous studies. Interestingly, the combination of all the
presented effects forces the publication date effect to assume an unusual
behavior. Indeed, the spline in publication date shows that the similarity
trend is not downward, but it alternates periods of increase and decrease.

4 Conclusion

With this work, we develop Deep Learning techniques to compute textual
similarity scores between patents in a new and efficient way. Together with
the use of GAMs, we modeled similarity values to fit those effects that
have a major influence on the response. In light of our results, we show
that contrary to previous studies, the downward trend in similarity scores
is the consequence of a multitude of exogenous phenomena. If appropriate
corrections are applied, the similarity levels show a different trend com-
pared to other studies.
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Abstract: The goodness of a predictive distribution depends on the aim of
the prediction. This presentation intends to shed light on properties of predictive
distributions in use nowadays. We also propose a new predictive distribution that
may be useful to obtain calibrated predictions for the probabilities of a future
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by a simple bootstrap procedure. In order to compare the different predictive
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Keywords: Bootstrap, Calibration, Prediction.

1 Introduction

Let us define the notation and the general assumptions that we will use
in the sequel. Suppose that {Yi}i≥1 is a sequence of continuous ran-
dom variables with probability distribution depending on an unknown d -
dimensional parameter θ ∈ Θ ⊆ Rd, d ≥ 1; Y = (Y1, · · · , Yn), n > 1, is
observable, while Z = Yn+1 is a future or not yet available observation.
For simplicity, we consider the case of Y and Z being independent random
variables and we indicate with G(z; θ) and Q(α; θ) the distribution func-
tion and the quantile function of Z, respectively. Given the observed sample
y = (y1, . . . , yn), we look for a predictive distribution Ĝ(z; y), with corre-
sponding quantile function Q̂(α; y), that fullfills some good requirements
for prediction.
There are different desirable properties that a predictive distribution should
possess. Here we consider only two of the most important:

(A) calibrated quantile function: EY [G{Q̂(α;Y ); θ}] = α, ∀α ∈ (0, 1)

(B) calibrated distribution function: EY [Q{Ĝ(z;Y ); θ}] = z, ∀z ∈ R.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Unfortunately, these properties cannot be satisfied at the same time. They
regard different aspects of a predictive distribution and depend on the
target of the prediction itself. A quantile function is calibrated if, in mean,
it coincides with the inverse of the true distribution function. This last
property can also be expressed in terms of coverage probabilities, since

EY [G{Q̂(α;Y ); θ}] = PZ,Y {Z ≤ Q̂(α;Y )}.

Similarly, a predictive distribution function is calibrated if, in mean, it
coincides with the inverse of the true quantile function. While from a the-
oretical point of view the knowledge of the distribution function coincides
with that of the quantile function for continuous random variables, this
is not true when we talk about predictive distributions. Thus, a predic-
tive distribution may be good for estimating quantiles but not as good for
estimating probabilities and the converse is also true.
In the sequel we always consider the maximum likelihood estimator (mle)

θ̂ = θ̂(Y ) for θ, or an asymptotically equivalent alternative. The estimative

predictive distribution and quantile functions, G(z; θ̂) and Q(α; θ̂) respec-
tively, usually satisfy properties (A) and (B) with an error term of order
O(n−1), as the sample size n → +∞, see e.g. Barndorff-Nielsen and Cox
(1996). It is well known that this error term could be substantial, in par-
ticular for small sample sizes.

2 Calibrated quantile functions

Modern literature has largely focused on the problem of prediction lim-
its, that is the problem of finding a predictive distribution which quantiles
satisfy property (A) with a high approximation. This requirement is usu-
ally met when a pivotal quantity for prediction is available. Unfortunately
in many situations of practical interest, a pivot is not known. Further-
more, even in the case of the normal distribution, sometimes the unknown
parameters are estimated using ad hoc estimators whose exact distribu-
tion is unknown. As a consequence, the distribution of a quantity such as
(Z− µ̂)/σ̂ is not known. Thus, it becomes of interest in the applications to
find alternative approximate solutions.
Here we quickly recall the procedure used in Fonseca et al. (2014), since
we will follow the same steps in the next section. The starting point is the
coverage probability associated to the estimative quantile function Q(α; θ̂):

PY,Z{Z ≤ Q(α; θ̂); θ} = EY [G{Q(α; θ̂); θ}] = C(α, θ).

Although an explicit expression of this coverage probability is rarely avail-
able, it is well-known that it does not match the target value α. Fonseca et
al. (2014) noticed that the function Gc(z; θ̂, θ) = C{G(z; θ̂), θ}, obtained by

substituting α with G(z; θ̂) in C(α, θ), is a proper predictive distribution
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function, whose associated quantile function is calibrated, giving coverage
probability equal to the target nominal value α, for all α ∈ (0, 1). A suit-

able parametric bootstrap estimator for Gc(z; θ̂, θ) may be readily defined
as

Gboot
c (z; θ̂) =

1

B

B∑
b=1

G{Q(α; θ̂b); θ̂}|α=G(z;θ̂),

where θ̂b, b = 1, . . . , B, are estimates obtained with B bootstrap samples
from G(z; θ̂). The corresponding α-quantile defines, for each α ∈ (0, 1), a
prediction limit having coverage probability equal to the target α, with
an error term which depends on the efficiency of the bootstrap simulation
procedure.

3 Calibrated distribution functions

In this section we address the dual problem, looking for predictive distri-
butions that satisfy property (B). We use exactly the same ideas proposed
by Fonseca et al. (2014) and recalled in the previous section, applied to the
distribution function instead of the quantile function. The result is a new
predictive distribution that may be useful for predicting probabilities for
the interest variable Z, instead of quantiles.
The estimative distribution function is not well calibrated in the sense of
property (B). Infact, the mean of quantiles of level equal to G(z; θ̂) is

EY [Q{G(z; θ̂); θ}] = A(z, θ)

and it does not match the target value z. Instead, the function

Qc(α; θ̂, θ) = A{Q(α; θ̂), θ}, (1)

obtained by substituting z with Q(α; θ̂) in A(z, θ), is a proper predictive

quantile function whose distribution function Gc(z; θ̂, θ) = G{A−1(z, θ); θ̂}
satisfies property (B) for every z ∈ R. Indeed,

EY [Q{Gc(z; θ̂, θ); θ}] = EY [Q{G(A−1(z, θ); θ̂); θ}]
= A{A−1(z, θ), θ} = z.

The predictive quantile function (1) and the corresponding calibrated pre-
dictive distribution are not useful in practice, since they depend on the
unknown parameter θ. However, a suitable parametric bootstrap estimator
for Qc(α; θ̂, θ) may be readily defined. Let yb, b = 1, . . . , B, be parametric
bootstrap samples generated from the estimative distribution of the data
and let θ̂b, b = 1, . . . , B, be the corresponding estimates. We can thus write

Qboot
c (α; θ̂) =

1

B

B∑
b=1

Q{G(z; θ̂b); θ̂}|z=Q(α;θ̂).
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The corresponding distribution function allows to predict the target prob-
ability P (Z ≤ z0), for each z0 ∈ R, with an error term which depends on
the efficiency of the bootstrap simulation procedure. Indeed, the estimate
is the value α0 such that Qboot

c (α0; θ̂) = z0.

4 The normal distribution

Let Y1, . . . , Yn, Z be independent and normally distributed with mean µ
and standard deviation σ, both unknown. In this context the pivotal quan-
tity T =

√
n/(n+ 1)(Z − Ȳ )/S is useful for prediction, with Ȳ and S

the sample mean and sample standard deviation, respectively. Its distri-
bution is Student t with n − 1 degrees of freedom. The quantile function√

(n+ 1)/nQt (α;n− 1)S+ Ȳ , satisfies property (A). Hence, in this case,
the calibrated quantile function presented in section 2 replicates the distri-
bution obtained from the pivot. However, as shown in the following simu-
lation study, the pivotal distribution is not the best choice for prediction
of probabilities.
The following tables show the results of Monte Carlo simulations based
on M = 10000 replications and B = 500 bootstrap replications for the
computation of the calibrated distributions. The sample size is n = 10, 25
and the true parameter values are µ = 0 and σ = 1. We have compared
the estimative distribution with the mle, the predictive distribution ob-
tained from the pivotal quantity and the two bootstrap calibrated predic-
tive distributions on the basis of the corresponding coverage probability
for α = 0.5, 0.9, 0.95, 0.99, 0.999 (Table 1) and the mean quantiles of lev-
els Ĝ(z; y) for z = 0, 1.5, 2, 2.5, 3.5 (Table 2). The best performances are
written in bold face, clearly showing how the aim of the prediction should
influence on the choice of the predictive distribution.

TABLE 1. Coverage probabilities. Standard errors smaller than 0.001.

Target estim. pivotal qu. calib. pr. calib.
n=10 α = 0.5 0.500 0.500 0.500 0.500

α = 0.9 0.861 0.900 0.899 0.892
α = 0.95 0.914 0.950 0.949 0.939
α = 0.99 0.967 0.990 0.990 0.981
α = 0.999 0.989 0.999 0.999 0.995

n=25 α = 0.5 0.500 0.500 0.500 0.500
α = 0.9 0.885 0.900 0.900 0.897
α = 0.95 0.936 0.950 0.950 0.946
α = 0.99 0.983 0.990 0.990 0.987
α = 0.999 0.997 0.999 0.999 0.998
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TABLE 2. Mean quantiles of level Ĝ(z; y). Standard errors smaller than 0.001

Target estim. pivotal qu. calib. pr. calib.
n=10 z = 0 -0.001 -0.001 0.000 0.000

z = 1.5 1.734 1.411 1.411 1.504
z = 2 2.312 1.803 1.804 2.004
z = 2.5 2.889 2.151 2.153 2.505
z = 3.5 4.044 2.732 2.741 3.498

n=25 z = 0 0.000 0.000 0.000 0.000
z = 1.5 1.581 1.465 1.465 1.500
z = 2 2.108 1.920 1.920 2.000
z = 2.5 2.635 2.350 2.350 2.500
z = 3.5 3.689 3.130 3.133 3.500
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Abstract: Over the last three decades the number of admissions to German hos-
pitals per year has increased rapidly. About a third of these admitted patients
have to be readmitted within the same year. Within the healthcare system in Ger-
many, health insurances collect lots of data submitted by physicians (outpatient
sector) and hospitals (inpatient sector), among others. In our research project,
we predict the probability that a patient has to be readmitted within the next
90 days after an admission by only using these routine data of a health insurance
company. We compare classical statistical (regularization) methods and machine
learning methods for this task.

Keywords: Boosting; Variable Selection; Benchmarking; Machine Learning.

1 Introduction

Since 1991 the number of admissions to a hospital in Germany has increased
from roughly 14.6 million to 19.4 million in 2019. We find that roughly a
third of the patients are admitted more than once within a year. Previous
studies have already concluded that a lot of these readmissions might be
avoided with better care or appropriate discharges from the hospital (see,
e.g., Yam et al., 2010). As readmissions represent a huge burden on the
healthcare systems, there are lots of studies about their prediction (see,
e.g., Artetxe et al., 2018). In our research project, we use health insurance
data to model the probability that a patient has to be readmitted within the
next 90 days. As in the data preprocessing a large number of variables has

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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been retrieved we compare classical statistical approaches, regularization
methods and machine learning techniques in this benchmark analysis.

2 Data

The data used for this study was provided by the AOK Baden-
Württemberg, a large German health insurance company. Following data
processing, continuously insured people aged 65 years or older were in-
cluded from 2011 to 2016. The provided data contains information about
basic demographics, inpatient diagnosis, and the outpatient medication re-
cieved before and after a stay in hospital (see Ruff et al., 2021). To deter-
mine cases for the prediction of readmissions, we chose all cases as index
admissions in which the main diagnosis can be assigned to one of the follow-
ing diseases (see Gerharz et al., 2022): acute myocardial infarction (AMI;
18,641 cases), heart failure (HF; 78,065 cases), a composite of stroke, tran-
sient ischemic attack, or atrial fibrillation (S/AF; 81,225 cases), chronic
obstructive pulmonary disease (COPD; 27,725 cases), type 2 diabetes mel-
litus (DM; 23,491 cases) and osteoporosis (OS; 6,101 cases). For each of
these diseases a data set is constructed containing the index admissions
for the respective disease. As a readmission we then define every following
admission within 90 days that also belongs to the respective disease.

The variables contain information about the age and gender of the pa-
tient, the number of previous hospitalizations within the last 365 days,
the month of the index hospitalization, information regarding the dis-
charge, the main diagnosis, secondary outpatient inpatient diagnoses, med-
ication as disclosed to the health insurance company, comorbidities and
STOPP/START (screening tool of older persons’ potentially inappropriate
prescriptions/screening tool to alert doctors to the right treatment) crite-
ria (Meid et al., 2018). We also consider every recieved medication from
90 days before the index admission up to until 10 days after the index
admission. The Elixhauser comorbidities and the STOPP/START criteria
are built with all the information from the diagnoses and the medication
(Elixhauser et al., 1998). All the occuring secondary diagnoses, medica-
tion, comorbidities and STOPP/START criteria are added to the data set
for the respective disease if their prevalence exceeds 1%. Altogether, this
results in 200-300 additional binary variables per disease.

3 Methods

As benchmark model we decide to use a simple GLM containing just the
basic information about patients. This contains basic demographics and
the information about the discharge of the patients. For the whole dataset,
we chose to compare a simple GLM, classical regularization approaches
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(LASSO, RIDGE, relaxed-LASSO), classical machine learning techniques
(kNN, CART, RF, NEUR NET) and classical boosting methods (GLM-
BOOST, XGBOOST).

Based on the idea of the relaxed-LASSO (sometimes also named post-
LASSO), where variables are selected based on the non-zero coefficient
estimates of the LASSO regularization and afterwards a full GLM is fit-
ted on these variables, we also put together a similar approach combining
random forests and a base model. First, we use the variable importance
of a random forest to rank our variables. This can be done either with
the GINI-Impurity-Decrease or with the Permutation variable importance.
Afterwards, we fit a base model on the most important variables. As base
model, we choose a GLM or a CART as an alternative. The number of most
important variables used is considered as a hyperparameter and can be
tuned. This results in four methods, which we abbreviate with GINI GLM,
GINI CART, PERM GLM and PERM CART.

A hyperparameter tuning step is conducted for the methods where neces-
sary. The performance is evaluated by computing the AUC in a 10-fold-
cross-validation for each of the six data sets individually.

4 Results

TABLE 1. Ranges of median AUC performance for all methods except baseline.

AMI HF S/AF COPD DM OS

Range 0.60-0.63 0.61-0.64 0.65-0.69 0.64-0.69 0.67-0.69 0.51-0.56

Previous literature has shown that it is very hard to predict readmissions.
Additionally, in this study no clinical data from conducted tests was pro-
vided. Nevertheless, the methods show decent performances (see Table 1).
The only disease that is not very well predicted by all the methods is os-
teoporosis. As it had just a very small number of index admissions it was
by far the smallest data set and no method achieved a good performance.

In Table 2, the ranks of the median performances of the methods for each
disease are shown. As the performance for osteoporosis was very different
from the others, in this table an average rank for all diseases and an average
rank for all diseases except osteoporosis is displayed for each method. Here,
it is shown that especially methods which use a variable selection step
perform very well.
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TABLE 2. Ranks of the median performance (AUC) of the methods for each
disease.

AMI HF S/AF COPD DM OS ∅Rank ∅RanknoOS

Baseline 15 15 15 15 15 9 14.00 15.0
GLM 9 2 7 5 6 3 5.33 5.8
LASSO 2 1 1 3 4 6 2.83 2.2
RIDGE 7 7 3 7 2 1 4.50 5.2
relaxed-LASSO 8 4 6 8 10 2 6.33 7.2

kNN 13 11 14 14 14 15 13.50 13.2
CART 11 14 13 12 12 13 12.50 12.4
RF 10 10 10 9 9 10 9.67 9.6
NEUR NET 4 6 9 6 7 7 6.50 6.4
GLMBOOST 5 8 4 4 3 11 5.83 4.8
XGBOOST 1 9 8 10 8 8 7.33 7.2

GINI GLM 6 5 5 2 5 5 4.67 4.6
GINI CART 14 12 12 13 13 14 13.00 12.8
PERM GLM 3 3 2 1 1 4 2.33 2.0
PERM CART 12 13 11 11 11 12 11.67 11.6

The best performance was achieved by using the permutation variable im-
portance of a random forest to rank all of the variables and then use hy-
perparameter tuning to evaluate how many variables should be included
in the successive GLM starting from the most important one. The variable
selection by using the GINI-Impurity-Decrease variable importance and a
subsequent GLM also ranks pretty good, but slightly worse than the same
procedure with the permutation variable importance. Also, it is a huge
advantage that these models are easy to interpret.

The next best method is the LASSO, which is part of the classical reg-
ularization methods and also includes variable selection. It is especially
interesting that this method performed best for the two diseases with the
largest amounts of cases. RIDGE also ranks pretty good.

From the group of machine learning and boosting methods both boosting
methods and the NEUR NET rank better than the other methods. GLM-
BOOST and XGBOOST contain intrinsic variable selection in the sense
that only the best variables are used in each step of the model building
process. Especially, the GLMBOOST ranks very good and should be con-
sidered as possible method for these modeling tasks, while the XGBOOST
has really excelled for just one of the diseases. Even though the CART and
RF also include intrinsic variable selection, these methods do not rank well
in this comparison.

Principally, the research field of neural nets is very broad. For this project,
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a simple neural net with one hidden layer and a fixed amount of nodes
was used. The number of epochs needed for training was determined in
a hyperparameter tuning step. In this project, the NEUR NET already
achieves a decent performance, but an even better performance might be
achieved with a different kind of architecture of the net.

On should notice that the CART, RF, XGBOOST and the variable-
importance-based variable selection with successive CART are all tree-
based methods and that all of them perform not very good. This is an
indicator that tree-based methods might not work well for this modeling
task compared with the other methods (see Figure 1). The only method,
which in most of the cases performs even worse is the k-nearest-neighbors
method.
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FIGURE 1. Comparison of the median AUC performances between the tree-based
methods and the other methods.

5 Conclusion

In this benchmark study, the performance of different methods, which es-
timated the probability for readmission for six different diseases on health
insurance data, was investigated. The data contained just a few metric and
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categorical variables, but a huge amount of additional binary variables.
For this binary classification task, especially methods considering variable
selection performed extremely well. Particularly, a simple GLM following
the variable selection using the variable importance of a random forest, the
LASSO and the GLMBOOST methods performed really well and should
be considered for these kind of tasks.
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Abstract: Periodicity in disease progression has not been widely explored, al-
though there has been some investigation into the periodicity of CRP, a blood
plasma protein which is a biomarker for inflammation, Dorraki (2018). Here we
aim to model periodicity in the disease progression of an inflammatory disease,
acute pancreatitis (AP). Two factors, termed protective and damaging factors,
characterise the disease progression and are modelled by a complex valued Gaus-
sian process with Markovian structure. We develop appropriate inference for this
approach showing that the first two principal components in the AP data have the
correct interpretation conjectured by Bart et al. (2005) and have a clear medical
interpretation. Periodicity of disease progression is identified, as well as optimal
medical intervention times and their uncertainty.

Keywords: Statistical disease modelling; Gaussian processes; Missing data anal-
ysis

1 Introduction to model

Bart et al. (2005) formulated a model to describe the progression of chronic
glomerulonephritis. The model incorporates both disease progression and
the organism’s response to the disease. Here, disease progression is charac-
terised by the interaction of damaging (pathogenetic) and protective (sano-
genetic) factors, which are in opposition throughout the disease course and
result in the following oscillating disease progression function,

S(t) = σ2e−ηt cos τt. (1)

The parameters of the function, η and τ , correspond to the severity and pe-
riodicity of the disease respectively and the estimation of these parameters
allow the identification of points in the disease progression where medical
intervention will be most effective.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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In their further work, Bart et al. hypothesised that these factors could be
identified from clinical data using principal component analysis and pro-
posed a parameter estimation framework based on the method of moments.
Following Bart et al. (2005), we consider the following model. First, using
principal component analysis (PCA) we identify two factors, Ut and Vt,
which have the interpretations of damaging and protective factors corre-
sponding to the disease progression and the body’s response to the disease.
Secondly, k regularly spaced observations of these principal components are

modelled as a Gaussian Markov chain. In vector representation, xt =

(
Ut

Vt

)
is modelled as

xt+1 = e−ηAxt +
√
1− e−2η Bξt, t = 2, . . . , k, (2)

xt, ξt ∼ N2(0, 0.5σ
2I2) independently t = 1, . . . , k, (3)

where

A =

(
cos τ − sin τ
sin τ cos τ

)
, B =

(
0 −1
1 0

)
.

This model can be written equivalently in the complex form:

Xt = Ut+iVt ∼ NC(0, σ
2), E(XsX

⋆
s+t) = σ2e−η|t|−iτt, E(XsXs+t) = 0,

(4)
where X⋆

s+t is a complex conjugate of Xs+t.

2 Main results

2.1 Simulated data

Using the Markov relationship from Equation 2, a complex data set has
been simulated to assess the suitability of the parameter estimators and
confidence regions used in Bart et al., (2005).
We derive alternative maximum likelihood estimators (MLEs) for the model
and investigate their consistency and asymptotic distribution. We find that
the confidence regions presented in Bart et al., (2005) are not appropriate
since in the limit of the noise tending to 0, the confidence region converges
to an ellipse rather than to a true value, and they do not include an open
set around the estimate. We therefore construct at Wald-type asymptotic
(1− α)100% confidence region for (θ, τ) of the following form

(1 + θ̂2)

(1− θ̂2)2
(θ̂ − θ)2 +

θ̂2

(1− θ̂2)
(τ̂ − τ)2 ≤ χ2

2(α)

2m(k − 1)
, (5)

where θ = e−η.
These confidence regions exhibit more appropriate behaviour, tending to
the parameter estimate in the asymptotic limit. The behaviour of the Wald-
type confidence regions are shown in Figure 1.
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FIGURE 1. The Wald confidence region for η and τ with increasing individuals
(left) and increasing time points (right)

FIGURE 2. Box plots comparing the effect of complete case analysis with impu-
tation by PCA on the parameter estimates

Since the real data that the model is applied to contains missing data, two
missing data handling methods, complete case analysis and imputation by
PCA, were compared. Complete case analysis, where any observation with
any missing values is removed from the data set and the analysis is applied
only on the remaining data usually results in biased estimates unless the
missingness is missing completely at random (MCAR). Imputation by PCA
is an imputation technique developed by Josse et al. (2016). It involves it-
eratively carrying out PCA on the data with imputed values projected onto
the principal components until convergence is met. Figure 2 shows the re-
sults of parameter estimation using both of these methods. It shows that
the τ estimate is robust to all types of missing data and can be well esti-
mated using both complete case analysis and imputation by PCA. For the
η and σ2 parameters, the estimates are less biased when using imputation
by PCA and the variance around the η parameter is reduced.
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2.2 Application to clinical data

The method has been applied to acute pancreatitis (AP) clinical trial data.
The data set consists of regularly structured sampling observation times
(0h, 3h, 6h, 12h, 24h, 48h, 72h, 168h), which are common over all patients.
They are arranged such that subsets of the sampling times, which are reg-
ularly spaced, can be used separately for the parameter estimation. The
results from using the 0h, 12h and 24h time points have been used initially
as they contain the least amount of missing data.
The first two principal components correspond well with the hypothesis
from Bart et al. (2005). The first principal component has strong correlation
with variables such as APACHE which is a score of severity in AP and age,
and the second principal component has strong correlation with immune
cells. These can be interpreted as damaging and protective factors in the
model.
With the number of patients m = 28 and number of time steps k = 3,
estimates for τ , η and σ2 can be obtained, where η is the survival rate and
τ determines the cycle of the disease. Using the likelihood based approach
as described in previously, the following parameter estimates are obtained:

� η̂ = 0.23

� τ̂ = 6.16

� σ̂2 = 8.97

The periodicity of this process was estimated as 12.25 hours with a confi-
dence interval of [11.4,13.2] hours.
By adapting the likelihood function, more of these time points from the
data frame can be used to get a more reliable estimate of the parameters.
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Abstract: National Theraputic Indicators (NTIs) are a prescribing tool to aid
improvement in patient care, prescribing safety and spending efficiency. This
analysis investigates whether any NTIs for primary care in Scotland have been
influenced by the presence of the COVID-19 pandemic in order to aid monitoring
and targeted interventions where necessary. To achieve this a piecewise linear
regression using a Multivariate Adaptive Regression Spline (MARS) modelling
approach is used to identify significant changes in the NTIs occuring at the start
of 2020.
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1 Introduction

The National Therapeutic Indicators (NTIs) for Scotland were initally de-
veloped in 2012 to identify differences between general practitioners (GPs)
preformance quality, as discussed in MacBride-Stewart, S. et al (2019).
Originally 12 indicators were developed to aid the maintenance and im-
provement of patient safety and spending efficiency in primary care. These
have now been extended to include 40 indicators which has allowed more
areas of concern to be monitored. For example, one indicator added in
the 2018/19 primary care NTI report was ‘MHRA Warning (valproate in
women of childbearing age %)’. This indicator measures the percentage
of female patients aged 13-45 who are prescribed the drug valproate for
treatment of epilepsy or bipolar disorder out of all females prescribed it.
Valproate is known to cause an increase in the risk of birth defects and
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development disabilities when taken during pregnancy, but there is still ev-
idence that woman taking the drug are not being made sufficiently aware
of this risk, as alerted by the UK Government Medicines and Healthcare
products Regulatory Agency (2017). NTIs are open data published on the
Public Health Scotland (PHS) website dashboard. Quantifying the direc-
tion, magnitude and time of changes in trends of NTIs could determine
whether past interventions have been effective. Identifying NTIs that have
a stable behaviour will hopefully result in removing indicators where im-
provements have been satisfactory, making room for higher priority reviews
of prescribing performance. Comparrison between each of the 14 Scottish
NHS health boards could also help to determine whether those with larger
populations were skewing the overall trend for Scotland. Furthermore, it
will allow for differences in priorities and performance of prescribing im-
provement between health boards to be investigated.

2 Methodology

2.1 Piecewise Linear Regression

Piecewise linear regression is where the linear predictor of a model is made
up of several straight line segments defined by basis functions. Where two
separate segments meet is known as a knot, and these can either be joined
or disjoined depending on whether the two lines are continuous or not. The
underlying functions of alternative approaches, such as smooth spline re-
gression, are not usually available. This makes them less suitable for this
context as it would be difficult to quantify patterns in the data. Addi-
tionally, a piecewise linear regression can offer quick execution which is
beneficial since a large number of data sets have to be modelled if the
data is updated. Finally, this modelling framework offers the flexibility to
account for non-linearities and seasonality.
A similar methodology was used by MacBride-Stewart, S. et al (2017) to
investigate three NTIs associated with high risk prescribing of NSAIDs. A
disjoint piecewise linear model was fitted with three segments; one for a
known intervention period of twelve months, one for the time before this,
and one for the time after. The impact of the intervention on prescribing
and whether this was continued after the intervention period ended could
then be evaluated. However, this approach is reliant on expert knowledge
about the implementation of prescribing policies and when they start to
impact prescribing. The affect of new policies can sometimes take a while
to be reflected in the data due to the delay between publication and the
awareness or action of those who prescribe the related drugs. On the other
hand, sometimes changes start before the intervention as practioners are
likely to be aware of possible issues and start to change their conduct
accordingly before official advice can be amended. Therefore, personal as-
sumptions may induce bias into the model. Moreover, other factors can
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alter the trend in an NTI such as drug classifications, data collection, pop-
ulation demographics and disease outbreaks which aren’t acknowledged in
this previous framework.

2.2 Multivariate Adaptive Regression Splines

The Multivariate Adaptive Regression Splines (MARS) algorithm was in-
troduced in Friedman, J.H. (1991) which was inspired by recursive partion-
ing but allowed for continuous models with multivariate interactions. This
was then developed into the R package “earth” by Milborrow, S. (2011).
It allows for the estimation of the location and number of basis functions
of each explanatory variable as well as any interactions between them.
However, since the only available explanatory variable is time in this case,
Equations 1 and 2 outline the univariate piecewise regression that is fitted
by MARS. The given NTI measure y is modelled using a Normal distribu-
tion with a constant variance σ2. The time t represents the yearly quarter
the NTI was measured over. The location of the knots are given by ck where
k is the total number of knots. The model coefficients are β1, ..., βk which
correspond to the given knot’s basis function, and β0 is the intercept term
of the model. A log link for the linear predictor of the mean µ is used since
all NTI measures are strictly positive.

y ∼ Normal(µ, σ2) (1)

log(µ) = β0 + β1max(0, c1 − t) + ...+ βkmax(0, ck − t) (2)

Since the number of knots in the linear predictor is unknown beforehand
this is a non-parametric modelling technique. Even though the class of
functions constructing the linear predictor has been predetermined to be a
series of linear functions, the parameters defining the functions are decided
by the data. MARS achieves this by preforming a Forward Pass, which adds
pairs of hinge basis functions to the initial intercept only linear predictor
using least squares regression. A pair of hinge basis functions have the form
βm1

max(0, cm − t) + βm2
max(0, t − cm). This algorithm terminates once

the coefficient of determination value (R2) of the resulting model increases
by less than 0.001. The Forward Pass is followed by a Backward Pass that
“prunes” any insignificant basis functions using Generalised Cross Valida-
tion (GCV) which approximates leave-one-out validation and penalises for
the number of parameters to prevent over-fitting. All terms in the model
after the Forward Pass are removed one-by-one determined by which re-
sults in the greatest reduction in the RSS. The GCV is calculated for each
sub-model created and is then used to pick the final model.

3 Results

From fitting the model to all NTIs it was evident that a change in trend at
the beginning of 2020, which coincides with the start of the COVID-19 pan-
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demic, was present in 5 main prescribing areas. Further investigations were
carried out to try to hypothesize the cause of the change at the Scottish
level. For example, the total number of antibiotics prescriptions dropped
from an estimated decreasing monthly rate of -0.007 items per 1000 list size
per day to a monthly decreasing rate of -0.019 items per 1000 list size per
day, where list size refers to the number of registered patients. At the same
time the percentage of patients with more than 4 antibiotic presriptions
a year, out of all people prescribed an antibiotic, in Scotland increased.
Hence, it could be speculated that the number of patients seeking antibi-
otics for minor infections was decreasing and reducing the total patients on
antibiotics whilst the number of patients needing multiple courses of an-
tibiotics for more serve infections was constant or possibly increasing. This
may be due to access to health care services being transitioned to remote
consultations and hospital outpatients being mostly closed except for emer-
gency cases. In addition, strong media messaging about the strain the NHS
was under and personal anxietes about becoming infected may have re-
duced the number of people seeking care for conditions besides COVID-19.

12/2019
06/2021

12/2021

86.0

86.5

87.0

87.5

2016 2018 2020 2022
Months Ending

P
er

ce
nt

ag
e 

of
 p

at
ie

nt
s 

(%
)

95% Interval Type

Confidence interval

Prediction Interval

SCOTLAND

NTI 3a : Antidiabetic drugs (metformin %)

FIGURE 1. Quartely percentages of patients receiving metformin out of all pa-
tients prescribed anti-diabetic drugs in Scotland. The solid black line indicates
the estimated mean from the piecewise linear regression with the corresponding
95% confidence and prediction intervals. Red data points and dates indicate pos-
sible outliers, the vertical dotted line and date indicate the model knot location.

Similar reasoning could be behind the impact on the prescribing of the anti-
diabetic drug metformin, shown as a percentage of all people prescribed an
anti-diabetic drug in Figure 1. Evidently, there is a Scottish wide downward
trend in the percentage of patients being prescribed metformin from 2020
onwards after a relatively stable rate. According to the National Thera-
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peutic Indicators 2018 report published by the Scottish Government and
NHS Scotland, metformin is the recommended first prescription for type-2
diabetes due to it’s proven survival advantage. As reported by Carr, M.
J. et al (2021) this reflects the fall in type-2 diabetes diagnoses in the UK
when compared to historical trends resulting in an estimated 60 000 new
diagnoses being missed or delayed between March and December 2020.
They also note that during the same time period mortality rates in the
UK for people with type-2 diabetes increased by approximately 0.13. Sim-
ilarly, a global survey conducted by Chudasama, Y. V. et al (2020) found
that healthcare professionals thought that the reduction in health care re-
sources caused by the pandemic impacted diabetes the most out of all
areas of chronic disease. At the start of the pandemic many NHS services
experienced an increased burden due to high levels of COVID-19 patients,
shortages in personal protective equipment (PPE) as well as staff absences
due to COVID-19 infections.

4 Summary

This analysis has used a MARS approach to investigate the COVID-19
impacts on piecewise linear regression models of the NTIs for primary care
in Scotland. Whilst this approach was appropriate for the majority of the
indicators some may have benefitted from a disjoint piecewise regression
to account for more extreme jumps between trends in the data. There-
fore, future work may involve developing a framework that can determine
whether a discontinuity is present in the data during the model fitting
process. However, this approach has allowed for the easy identification of
regions and time points where significant changes in NTI prescribing data
has occurred. The monitoring of affected NTIs can help asses the repercus-
sion of the COVID-19 pandemic by evaluating if prescribing trends return
to their previous state as the pandemic becomes less influential on health
care delivery, social distance restrictions and the burden on NHS services.
Finally, a dashboard to display the results of the modelling carried out in
this analysis, which includes models where extreme outliers have been re-
moved and yealry seasonal cycles have been taken into account, has been
developed. This tool can be updated as new data becomes available for
internal use at PHS. It is hoped this will aid analysts in carrying out in-
vestigation of a similar manner and make it a less time consuming task
despite the large amount of data.

Acknowledgments: Special Thanks to Gavin MacColl, Raul Barrocal-
Martin, Rita Nogueira and Stuart McTaggart at Public Health Scotland
for supervising this project.
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Abstract: Patients who are mechanically ventilated in the intensive care unit
(ICU) participate in exercise as a component of their rehabilitation to ameliorate
the long-term impact of critical illness on their physical function. The effective
implementation of these programmes is hindered, however, by the lack of a scien-
tific method for quantifying an individual patient’s exercise intensity level in real
time, which results in a broad one-size-fits-all approach to rehabilitation and sub-
optimal patient outcomes. In this work we have developed a Bayesian hierarchical
model with temporally correlated latent Gaussian processes to predict V̇ O2, a
physiological measure of exercise intensity, using readily available physiological
data. For practical use by clinicians V̇ O2 was classified into exercise intensity
categories. Internal validation using leave-one-patient-out cross-validation was
conducted based on these classifications, and the role of probabilistic statements
describing the classification uncertainty was investigated.

Keywords: Bayesian Hierarchical Model, INLA, Exercise Rehabilitation

1 Introduction

Patients who are mechanically ventilated in the intensive care unit (ICU)
as a result of critical illness are often left with a range of impairments, due
to the pathological effects of critical illness and its treatments on nerve,
muscle, cardiac and respiratory function, Guarneri et al. (2008).
Rehabilitation, while the patient is still receiving mechanical ventilation
in the ICU, involves progressing patients through various simple exercises,
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and is considered the best way to ameliorate the impact of critical illness
and its associated treatments on physical function.
The current approach to rehabilitation is a one-size-fits-all approach based
on the assumption that the metabolic cost of individual rehabilitation activ-
ities does not differ across patients. Recent work has shown this assumption
to be invalid, however, suggesting that individuals with different physiolog-
ical profiles receive similar, and often sub-optimal, exercise programmes.
To address these issues, a scientific method for quantifying the exercise
intensity level of an individual patient in real time is required.
Exercise load during rehabilitation can be quantified by measuring a pa-
tient’s rate of oxygen consumption (V̇ O2), but these measurements are not
available in many intensive care units.
The primary contribution of this work is the development and internal
validation of a first of its kind prediction model of V̇ O2 for mechanically
ventilated intensive care patients, providing clinicians with real-time pre-
dictions of patients’ levels of absolute exercise intensity, allowing tailored
exercise rehabilitation plans to be implemented.

2 Data and exploratory analysis

The data are from the observational study conducted by Black et al. (2020),
which took measurements as mechanically ventilated ICU patients partici-
pated in various rehabilitation activities. Measurements were recorded on a
breath by breath basis, resulting in high frequency data consisting of 74,332
measurements from 37 patients and 103 rehabilitation sessions. They are hi-
erarchical in nature with repeated measurements within sessions and often
multiple sessions per patient. The data contained measurements of V̇ O2,
physiological covariates typically available in ICU - tidal volume (VT ), res-
piratory rate (RR) and partial pressure of end tidal CO2 (PETCO2) which
have known relationships with V̇ O2 - and patients’ baseline characteristics.
The primary findings of the exploratory analysis were strong linear rela-
tionships between V̇ O2 and VT when placed on the log-log scale, as well as
interactions between log(VT ) and both log(RR) and log(PETCO2).

3 Model and inference

Model development was undertaken within the Bayesian paradigm. In prac-
tice predictions of V̇ O2 would likely be presented to clinicians in the form
of classifications; the Bayesian approach allows for uncertainty around V̇ O2

predictions to be propagated through the model, and used to quantify un-
certainty about classifications. Future work is needed to determine these
classification categories, however, and in practice different categories may
be used in different contexts. This modelling approach allows us to adapt
the model to any classification task that may arise.
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In order to account for the hierarchical and temporal nature of the data
we have developed a Bayesian hierarchical model for V̇ O2 with temporally
correlated latent Gaussian processes. We indicate the value of log(V̇ O2)
taken at time t for the ith patient’s jth rehabilitation session as yijt and
assume that

yijt | µijt, τ ∼ Normal(µijt, τ
−1),

where µijt is a linear predictor consisting of the physiological covariates
and baseline characteristics identified in the exploratory analysis, a ses-
sion level varying intercept term, a patient level varying coefficient for
the effect of log(VT ), and a temporal error term characterised using an
Ornstein-Uhlenbeck process, Øksendal (2003). The model was fitted using
the Integrated Nested Laplace Approximation (INLA), with the R-INLA

package, Rue et al. (2017).

4 Results

The model was fitted to both the raw data and data smoothed using a
three-value rolling average in order to limit the impact of spikes in V̇ O2

values induced by patients coughing. Posteriors for the varying intercept
and varying coefficient terms revealed a high level of between patient and
between session heterogeneity.
To assess the predictive performance of the model we used cross-validation,
leaving observations out at the patient level to account for similarity be-
tween observations within patients and prevent leakage. This was separately
performed for the models using raw and smoothed data.
To assess the model as it would be used in practice, V̇ O2 was classified into
rest, low, medium and high categories of exercise intensity. Accuracy for
these classifications was 60.0% and 61.1% for the raw and smoothed data
models respectively, however the raw data model had far higher accuracy
for observations classified as high compared to the smooth data model
(74% vs 56%). This is of particular clinical relevance as it indicates when
a patient’s exercise load needs to be reduced.
We note that for almost all rehabilitation sessions the model does a re-
markable job of matching the shape of the V̇ O2 curve over time (Figure 1).
As the plot for session 109 indicates, however, for some sessions it is unable
to quantify the scale of the curve, resulting in inaccurate classifications.
A key strength of the model is that it returns probabilistic statements about
classifications, providing important information to clinicians. Using these
statements and a suitable decision rule, we found that the model correctly
directed the clinician to lower the exercise load 88.0% and 79.1% of the
time for the raw and smoothed data models respectively, when the true
value of V̇ O2 indicated a high level of exercise intensity.
The model presented here is a first of its kind prediction model for exercise
intensity in ventilated intensive care patients, using Bayesian hierarchical
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FIGURE 1. Compares predicted (with 95% credible intervals) and observed val-
ues of V̇ O2 for two example sessions, one where the model performs well (session
15) and one where it performs poorly (session 109).

modelling and covariates that are readily available in the majority of in-
tensive care settings. If externally validated this model could be the first
step towards patients receiving personalised exercise rehabilitation regimes
and significant improvements in post-ICU outcomes.
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Abstract: In this paper we examined how a semantically enriched query alter-
natives improve the score and rank of the search results in Information Retrieval
Systems. This enrichment is statistically analysed and presented using TREC
data and utilizing Solr full-text search platform. The improvement are measured
using scoring functions such as BM25. Mean Average Precision (mAP) measure
was used to compare different configurations of search engine using a scheme we
designed for this purpose.
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1 Introduction

The Information retrieval (IR) process consists of indexing corpus data
that are analysed and indexed, and searching during which a user submits
a query. The search engine retrieves documents where each term in the
query is matched against the terms stored for each document in the col-
lection. The search results, i.e. the retrieved documents, are ranked and
returned in descending order. Traditionally, relevance process is based on
keyword searching for all the terms in the query with little or no mod-
ifications. Techniques exist to augment the user’s query with additional
terms to maximize the relevance of search results. Search engines support
semantic-based searching using language-based synonym, domain-specific,
and custom thesauri. In this paper, we will discuss our findings using many
techniques of semantic-based searching along with different ways to con-
figure the search engine in the attempt answer this question: what factors

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
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influence the relevance of retrieved documents and how to validate the
differences statistically.
In section 2 we survey some of the related research. In section 3, we briefly
explain the scoring, ranking, and the evaluation model. In section 4, we
describe a methodology we used in this research. Section 5 describes our
experiment. An analysis and evaluation of the test results are discussed in
section 6. We provide summary in section 7.

2 Related Work

Zobel and Moffat (1998) had investigated the similarity measure, by de-
composing it into eight orthogonal factors. By re-configuring this similarity
measure in different ways and running document search against each config-
uration, they were able to observe the effects on the ranking of the retrieved
results. Our experimental research focused on observing the effect of chang-
ing the search engine configurations on the ranking of the retrieved results.
Buscaldi et al. (2014) uses search and similarity measure based on ontol-
ogy. The goal of this research is to improve either recall or precision, the
technique does require prepossessing content and modifying or changing
the scoring function.

3 Scoring, Ranking and Evaluation Models

Lucene-based Solr Engine (Apache Software Foundation, 2021) was used
to evaluate statistical information models with different indexing config-
urations. An efficient implementation of Lucene scoring evolved from the
underlying information retrieval models to rank the relevance of matched
documents to user’s query (Apache Software Foundation, 2022). Most of
the models are based on the maximum likelihood estimate of the relative
counts. The best Match family (BM25) by Jones et al. (2000) will be the
only one presented here as implemented by Lucene:

f(q, d) =
∑

w∈q
⋂

d

c(w, q)
(k + 1)c(w, d)

c(w, d) + k(1− b+ b |d|
avdl )

log
M + 1

df(w)
(1)

where b ∈ [0, 1] is part of the normalizer term 1 − b + b |d|
avdl ; avdl denotes

average document length.
To evaluate the precision, Mean Precision Average (mPA) evaluation model
is used.

mPA =
1

n

n∑
k=1

APk (2)

Where APk is the Average Precision for class k and n is the number of
classes.

463



Hasso and Matawie

4 Query Expansion

Query expansion is a technique to improve relevancy of the result sets
returned by search engine. The goal is to augment the original query sub-
mitted by users. In this research we used the following query expansion
techniques:

Language-based Synonym Expansion : we augment the query at runtime
with synonyms based on keywords in the original query. We used two
types of synonyms: domain-specific, NASA Thesaurus [NASA, 2010]
and generic English language-based thesaurus, [WordNet, 2010].

Content-based Synonym Expansion : we extract related concepts that tend
to co-occur nearby in the corpus. We used word embeddings, also
known as word2vec model, that allows us to find similar words that
occur in the same context thus displaying their semantic affinity [Te-
ofili, 2019].

Semantic Knowledge Graph (SKG) is a graph data structure that creates
relationships between entities, e.g. terms, phrases, or extracted con-
cepts built from a corpus of data, Grainger et al. (2016). as a way to
find and rank terms that best match a query.

5 Experiments

We have developed a scheme by which a query is transformed into an
alternative form, in addition to its original form, and combined with
other factors to produce different configurations as input to Solr search
engine and examined the results. The scheme can be illustrated as follows:
q − c− f , where q refers to query type, and can have any of these values:
q = {t, c, b, w} the numbers refer to unmodified, concepts, con-
cepts+booster, and similar concepts using word2vec, respectively.
c refers to how we configured Solr before each indexing phase.
f = {title only, title+ content} these are the fields that are used to search
on. For ‘title’, we instruct Solr to search in the title of the document, and
for ‘title+content’, we instruct Solr to search in both of these fields.

Solr search engine configurations Table will be inserted here showing all
possible Solr configurations we ran our queries against. Figure 1 shows a
scatter plot of all the test runs shwoing the Mean Average Precision (mAP)
measure.

6 Analysis and Evaluation

The results of using unmodified, boosted, concept, and word2vec query
types combined with solr configuration and target field search gave us re-
sults which can hardly be generalized to determine what combination of
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FIGURE 1. Summary results of all test runs

these configurations work best. It certainly showed what are the best per-
formers relative to this limited set of corpus data.
We used Two-Way repeated measures analysis to test the main and inter-
action effects between the three factors with 11, 4 and 2 levels, respectively
(per our configuration scheme as described in section 4). All the results
were highly significant confirming different results for different alternative
semantic enrichment. To further investigate and identify the pattern of
the differences we used Student-Newman-Keuls (SNK) Post-Hoc test on
74 pairwise comparisons. Post-Hoc results showed (as expected) a specific
enrichment approach is more suitable than others for this data, however,
in some cases more investigation and analysis are required to further con-
firm or refute the results obtained. For example, the NASA thesaurus still
requires further refinement to be useful as a domain-specific thesaurus.
Furthermore, the size of the TREC aviation corpus data we used for this
experiment is not large enough to generate good word2vec models that
give us a better content-based synonym configuration that influences the
relevance score.

7 Conclusion

We have developed an experimental methodology that comprises a testing
platform using Solr search engine to generate and evaluate the test results
TREC’s mAP evaluation measure. The Solr search engine was configured
and queries were expanded using different techniques. We have observed
difference in the results obtained. The Statistical analysis supported these
results with highly significant differences(p < 0.01).
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Abstract: We propose a novel strategy for model selection of ordinally scaled
predictors in the cumulative logit model. The original group lasso is expanded
by use of a difference penalty on neighboring dummy coefficients, thus taking
into account the ordinal structure. We apply stability selection for error control
and for choosing a proper amount of regularization for structure estimation. We
consider a survey on consumers’ perception and acceptance for sustainable use
of boar tainted meat consisting of Likert-type items.
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1 Introduction

We investigate a survey concerning consumers’ perception and acceptance
of boiled sausages from strongly boar tainted meat, conducted by the De-
partment of Animal Sciences, University of Göttingen (Meier-Dinkel et al.,
2016). In order to be able to process highly tainted meat sustainably, we
aim to detect the relevant factors for the overall liking of the 120 con-
sumers regarding boiled sausages with a proportion of 50% tainted boar
meat. The six ordinal predictors considered (expected liking, appear, odour,
flavour, texture, aftertaste) and the ordinal response (overall liking) are
measured on a 9-point scale (1 = dislike extremely to 9 = like extremely).
Now, the effect of the ordinal covariates on the ordinal factor overall liking
is to be investigated, which also requires a strategy for variable selection.
In the cumulative logit model, the link between observed variable Y and
latent variable u is defined by the threshold mechanism: Yi = r ⇐⇒ θr−1 <
ui ≤ θr, r = 1, ..., c, where −∞ < θ0 < θ1 < ... < θc = ∞ are the ordered

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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thresholds. The latent variable is modeled as ui = −xT
i β + ϵi, i = 1, ..., n,

where xi are observed ordinal covariates, β is the parameter vector and
ϵi is an error variable with logistic distribution function. Now for variable
selection, the logistic group lasso estimator βλ (Meier et al., 2008; Yuan
and Lin, 2006) can be extended to the class of cumulative logit models and
is given by the minimizer of the function lλ(β) = l(β) + λ

∑p
j=1 Jj(βj),

where l(β) is the log-likelihood of the cumulative logistic distribution. In
order to take into account the ordinal structure of the predictors, we modify
the usual L2-norm by the first-order difference penalty functions

Jj(βj) =

√√√√{
kj∑
l=1

kj(βjk − βj,k−1)2

}
,

with kj being the number of levels (for each variable) and βj0 = 0∀j, as in-
troduced by Gertheiss et al. (2011). To enhance the cumulative group lasso,
we apply stability selection as suggested by Meinshausen and Bühlmann
(2010), a promising subsampling strategy in combination with high dimen-
sional variable selection. In general, instead of selecting/fitting one model,
the data are pertubed/subsampled many times and we choose those vari-
ables that occur in a large fraction of runs. For every variable xj , j = 1, ..., p,
the estimated probability π̂λ

j of being in the stable selection set corresponds
to the frequency of being chosen over all subsamples. Or, in other words,
we keep variables with a high selection probability π̂λ

j ≥ πthr and neglect
those with low selection probabilitiy. The cutoff value can therefore be seen
as a tuning parameter and a typical choice is πthr ∈ (0.6, 0.9).

2 Numerical Experiment

Before applying the proposed method to the boar taint data, we carry out
a simulation study to investigate the properties of the proposed ordinal-
on-ordinal selection with stability selection (OSSS) approach. In order to
fit OSSS, samples of size ⌊n/2⌋ are drawn without replacement in each it-
eration. For comparison, we fit the model also without stability selection,
which we call here ordinal rank selection (ORS). For ORS we assign ranks
to variables depending on their importance, determined from the coefficient
path. We generate p = 20 ordinally scaled variables, including 8 noise vari-
ables as follows: x1, ..., x4 are non-monotone, x5, ..., x8 are monotone but
non-linear and the effect of x9, x10, x13, x14 is linear across categories. The
remaining eight predictors are irrelevant, i.e., with effects being zero. Factor
levels are randomly drawn from {1, ..., 5}, meaning that each covariate has
the same number of levels. The (true) effects for some covariates are shown
in Figure 1 (left). Using those predictors, we construct the ordinal (logis-
tic) response of different sample sizes (n = 200, 500, 1000). To evaluate the
selective performance, we construct the Receiver Operating Characteristic
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(ROC) by/via varying selection thresholds and calculate the Area Under
this Curve (AUC) in each iteration. Figure 1 (right) shows the performance
in terms of AUC as obtained with a selection of different λ values and
n = 500. The grey solid line corresponds to an AUC = 0.5, which would
result from pure guessing. Comparing results of the different scenarios, it
can be stated that, stability selection has the potential to markably im-
prove selection results. It is seen that, when λ is varied within a reasonable
range, the stable selection sets are quite insensitive to the choice of λ.
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FIGURE 1. True effects of influential predictors x1, x5, x9 (left). Boxplot of
AUC for stability selection (λ ∈ {5, 7.5, 10, 12.5}) and without stability selec-
tion (right); calculations based on 100 simulated data sets.

3 Case Study: Sustainable Use of Boar Tainted Meat

Figure 2(a)–(d) shows the resulting estimates for relevant covariates and
different values of tuning parameter λ when applying the proposed method
to the boar taint data. It is seen that for smaller λ (light gray), the estimates
are more wiggly and become more and more smoothed out/shrunken as
λ increases. In general, the overall liking increases with the liking level
of the covariates. The coefficient path as a function of λ can be found
in Figure 2(e) and Figure 2(f) shows the stability path, indicating the
order of relevance of the predictors according to stability selection. The
probability to be selected within resampling is highest for flavour, texture
and appearance (in descreasing order). It can be concluded that the stability
path is potentially very useful for improved variable selection.
In summary, our preliminary results suggest that item-on-item regression
with stability selection works well in the cumulative logit model with or-
dinally scaled predictors and ordinal group lasso penalty. Current research
focusses on estimating item-on-item graphical models with stability selec-
tion in high dimensional settings.
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FIGURE 2. Cumulative group lasso estimates of dummy coefficients as functions
of class labels (λ ∈ {70, 50, 20, 10, 5}) (a)–(d); Paths of cumulative group lasso
estimates of dummy coefficients as functions of penalty parameter λ (e); Stability
path of the cumulative group lasso (f).
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Abstract: Testing the equality of mean vectors of g independent groups of
moderate-dimensional normal random variables with different unknown covari-
ance matrices is a challenging problem. When g = 2 an approximation solution is
given by the famous Behrens-Fisher test. For moderate-dimensional data where
the dimension p of the observation vector is moderately large relative to the group
sample sizes ni, i = 1, . . . , g, standard inferential approaches can be misleading.
We present here a directional test and a modification of log-likelihood ratio test.
The empirical evidence shows that the directional test improves over the alter-
native solutions and gives accurate inference, at least when p = o(nκ

i ) for some
κ ∈ (0.5, 1).

Keywords: Behrens-Fisher; Directional test; Higher-order asymptotics; Saddle-
point approximation.

1 Introduction

Mccormack et al. (2019) showed that when testing a specific value of the
mean of a multivariate normal random variable the directional test (Fraser
et al. 2016) coincides with the exact Hotelling’s T 2. Exactness is seen to
extend also when testing the equality of g means of independent groups
of vectors with identical unknown covariance matrix, in the sense that
the directional p-value is exactly uniformly distributed provided that ni ≥
p + 1 + g. Here we consider the more general case in which the g groups
may have different unknown covariance matrices.
Directional inference on a vector parameter of interest is developed by Davi-
son et al (2014) and Fraser et al. (2016) using saddlepoint approximations
and one-dimensional numerical integration. Its accuracy is related to the
accuracy of the saddlepoint approximation. Empirical results of Davison et

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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al (2014) and Fraser et al. (2016) showed that the directional test is ex-
tremely accurate even in regimes where p, however lower than ni, increases
with ni.
Huang et al. (2021) showed that the directional test is indeed exact in
some high-dimensional normal hypothesis testing problems. Here instead
we consider a setting when exactness does not hold. Extended simulation
studies show that the directional test has a higher accuracy than that of
standard log-likelihood ratio and higher-order modifications proposed by
Skovgaard (2001).

2 Comparison of normal mean vectors

Suppose we have independent Yij ∼ Np(µi,Λ
−1
i ), i = 1, . . . , g (g ≥ 2)

and j = 1, . . . , ni, with unknown means µi and unknown positive definite
covariance matrices Λ−1

i . We are interested in testing the hypothesis

H0 : µ1 = · · · = µg. (1)

Let tr(A) denote the trace operator of a matrix A and vech(A) trans-
form a matrix A into a vector by eliminating all supradiagonal elements
of A. The log-likelihood for the parameter θ = {µT

1 , . . . , µ
T
g , vech(Λ1)

T, . . . ,
vech(ΛT

g )}T is

ℓ(θ) =

g∑
i=1

ni
2

log |Λi| −
ni
2
µT

i Λiµi −
1

2
tr(Λiy

T

i yi) +
ni
2
ȳT

i Λiµi +
ni
2
µT

i Λiȳi,

where yi = (yi1, . . . , yini
)T. The maximum likelihood estimates are µ̂i =

ȳi = 1T
ni
yi/ni and Λ̂−1

i = yT
i yi/ni − ȳiȳ

T
i , i = 1, . . . , g, where 1ni

is
a ni-dimensional vector of ones. The constrained maximum likelihood
estimate under H0 are denoted by µ̃i = µ̃ and Λ̃−1

i , where Λ̃−1
i =

Λ̂−1
i + (ȳi − µ̃)(ȳi − µ̃)T. We compute the constrained maximum likeli-

hood estimate µ̃ numerically by maximization of the profile log-likelihood
ℓP (µ) = −

∑g
i=1(ni/2) log |Λ̂

−1
i + (ȳi − µ)(ȳi − µ)T|.

To develop the directional test under the null hypothesis (1), following
Fraser et al. (2016) we consider the parameterization (ψ, λ) with the pa-
rameter of interest ψ = (µT

2−µT
1 , . . . , µ

T
g−µT

1 )
T and the nuisance parameter

λ = {µT
1 , vech(Λ1)

T, . . . , vech(Λg)
T}T. This parameterization places nonlin-

ear constraints on canonical parameter φ. Thus, the tilted log-likelihood is
ℓ(φ; t) =

∑g
i=1 ℓi(φi; t) with φi = {µTi Λi, vech(Λi)T }T and the i-th group’s

contribution

ℓi(φi; t) =
ni
2

log |Λi| −
ni
2
µT

i Λiµi −
1

2
tr (Λi [y

T

i yi + (1− t) {niµ̃(ȳi − µ̃)T

+ni(ȳi − µ̃)µ̃T}]) + ni {tȳi + (1− t)µ̃}T
Λiµi.
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The maximum likelihood estimate along the line s(t) = (1− t)sψ is µ̂i(t) =

tȳi + (1− t)µ̃ and Λ̂−1
i (t) = Λ̃−1

i − t2(ȳi − µ̃)(ȳi − µ̃)T, where the expected
value sψ of the corresponding sufficient statistics s under H0 has compo-
nents [niµ̃

T −niȳ
T
i ,

ni

2 vech{µ̃(ȳi− µ̃)T +(ȳi− µ̃)µ̃T}T]. The maximum like-

lihood estimate Λ̂−1
i (t) exists if tsup = min

1≤i≤g

[
{(ȳi − µ̃)TΛ̃i(ȳi − µ̃)}−1/2

]
with (ȳi − µ̃)TΛ̃i(ȳi − µ̃) ̸= 0. After some algebra, the directional p-value
can be computed as

p(ψ) =

∫ tsup

1
td−1h{s(t);ψ}dt∫ tsup

0
td−1h{s(t);ψ}dt

,

with h{s(t);ψ} =
∏g
i=1 |Λ̂

−1
i (t)|

ni−p−2

2 |C̃1(t)|1/2, and where C̃1(t) =∑k
i=1 ni Λ̃i

[
Ip − t2

{
(p+ 1)Ip − tr (Λ̂−1

i Λ̃i)Ip − Λ̂−1
i Λ̃i

}]
.

For comparison, we consider here the log-likelihood ratio test and its modi-
fications proposed by Skovgaard (2001). The log-likelihood ratio test takes
the form

W =

g∑
i=1

ni

(
log |Λ̃−1

i | − log |Λ̂−1
i |

)
.

Under H0, the statistic W has approximate chi-square distribution with
degrees of freedom d = p(k − 1), when p is fixed.
Skovgaard (2001) proposes two modifications of W designed to maintain
high accuracy in the tails of the distribution

W ∗ =W

(
1− 1

W
log γ

)2

and W ∗∗ =W − 2 log γ.

Both W ∗ and W ∗∗ have approximately a chi-square distribution with d
degrees of freedom under H0. In this specific case, the expression of the
correction factor γ simplifies to

γ =

{∑g
i=1 ni(µ̃− ȳi)

TΛ̃i(µ̃− ȳi)
}d/2

W d/2−1
∑g
i=1 ni(µ̃− ȳi)TΛ̂i(µ̃− ȳi)

{
g∏
i=1

|Λ̂i|
|Λ̃i|

} p+2
2

{
|C̃|

|
∑g
i=1 niΛ̃i|

,

}1/2

,

where C̃1 =
∑g
i=1 niΛ̃i

{
tr

(
Λ̂−1
i Λ̃i − Ip

)
Ip + Λ̂−1

i Λ̃i

}
.

When g = 2, this is a test for the multivariate Behrens-Fisher problem.
Therefore, we also compare the directional test with the procedure proposed
by Nel and Van der Merwe (1986) since it was shown to have near optimal
power while maintaining reasonable type I error. The test by Nel and Van
der Merwe (1986) is computed using the formula

T ∗2 = (ȳ1 − ȳ2)
T

(
S1

n1
+
S2

n2

)−1

(ȳ1 − ȳ2)

474



Huang and Sartori

TABLE 1. Empirical type I error for DT, LRT, Sko1, Sko2 and/or BF with
ni = 100 at the nominal level α = 0.05, with p = nκ.

Σi κ g = 2 g = 30

DT BF LRT Sko1 Sko2 DT LRT Sko1 Sko2

(I) 5/12 0.051 0.051 0.058 0.051 0.051 0.048 0.118 0.049 0.048
6/12 0.050 0.050 0.059 0.050 0.050 0.048 0.188 0.050 0.048
7/12 0.050 0.050 0.069 0.050 0.050 0.048 0.382 0.051 0.048
8/12 0.048 0.048 0.079 0.049 0.048 0.049 0.754 0.060 0.052
9/12 0.053 0.052 0.110 0.054 0.053 0.050 0.993 0.087 0.061
10/12 0.046 0.045 0.180 0.050 0.047 0.054 1.000 0.223 0.099

(II) 5/12 0.051 0.053 0.059 0.051 0.051 0.049 0.117 0.049 0.048
6/12 0.050 0.053 0.064 0.051 0.050 0.049 0.187 0.050 0.049
7/12 0.050 0.058 0.074 0.051 0.051 0.048 0.382 0.051 0.049
8/12 0.049 0.066 0.093 0.051 0.051 0.048 0.754 0.059 0.050
9/12 0.052 0.081 0.144 0.057 0.054 0.050 0.993 0.086 0.059
10/12 0.050 0.107 0.262 0.063 0.059 0.052 1.000 0.225 0.099

(III) 5/12 0.050 0.054 0.059 0.050 0.050 0.049 0.118 0.049 0.048
6/12 0.053 0.058 0.065 0.053 0.053 0.048 0.187 0.049 0.048
7/12 0.048 0.062 0.076 0.050 0.049 0.049 0.383 0.052 0.050
8/12 0.049 0.075 0.104 0.051 0.049 0.049 0.755 0.060 0.051
9/12 0.050 0.104 0.171 0.057 0.054 0.050 0.993 0.085 0.059
10/12 0.049 0.154 0.345 0.071 0.062 0.053 1.000 0.225 0.099

where Si = ni

ni−1 Λ̂
−1
i , i = 1, 2. The statistic ν−p+1

pν T ∗2 under H0 has

approximate F -distribution with degrees of freedom (p, ν − p + 1), i.e.
F (p, ν − p+ 1), where ν in the degrees of freedom is

ν =
tr

{(
S1

n1
+ S2

n2

)(
S1

n1
+ S2

n2

)}
+

{
tr

(
S1

n1
+ S2

n2

)}2

tr
{(

S1
n1

)(
S1
n1

)}
+
{
tr

(
S1
n1

)}2

n1−1 +
tr

{(
S2
n2

)(
S2
n2

)}
+
{
tr

(
S2
n2

)}2

n2−1

.

See Rencher (1998, Section 3.9) for more details.

3 Simulation studies

The performance of the directional test for hypothesis (1) has been eval-
uated via Monte Carlo simulations based on 10,000 replications. The di-
rectional test (DT) is compared with the chi-square approximation for the
log-likelihood ratio test (LRT) and two modifications of it proposed by
Skovgaard (2001) (Sko1 and Sko2). When g = 2, we also considered the
performance of the approximation of the Behrens-Fisher test T ∗2 (BF).
The approaches are evaluated in terms of type I error and power.
Suppose that the data matrix yi generated from a multivariate normal
distribution Np(0p,Σi), i = 1, . . . , g. Under the null hypothesis H0, we set
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TABLE 2. Empirical type I error for DT, BF, LRT, Sko1 and Sko2 with ni = 1000
at the nominal level α = 0.05. Σi = ρ

|j−l|
i .

κ ρ1 = 0.1 and ρ2 = 0.2 ρ1 = 0.1 and ρ2 = 0.9

DT BF LRT Sko1 Sko2 DT BF LRT Sko1 Sko2

5/12 0.048 0.048 0.050 0.048 0.048 0.052 0.054 0.055 0.052 0.052
6/12 0.045 0.045 0.050 0.045 0.045 0.050 0.053 0.056 0.050 0.050
7/12 0.050 0.050 0.061 0.050 0.050 0.051 0.058 0.065 0.051 0.051
8/12 0.049 0.049 0.071 0.050 0.049 0.995 0.064 0.996 0.995 0.995
9/12 0.071 0.050 0.160 0.072 0.072 1.000 0.086 1.000 1.000 1.000
10/12 0.174 0.050 0.582 0.184 0.178 1.000 0.187 1.000 1.000 1.000

up µ1 = · · · = µg = 0p and consider three structure of the covariance
matrices, i.e. (I) Σi = Ip, where Ip denotes a p × p identity matrix; (II)

Σi = (σjl)p×p = ρ
|j−l|
i with ρi is a sequence from 0.1 to 0.9 with length g

and increment (0.9−0.1)/(g−1). In particular, when g = 2, Σ1 = (0.1)|j−l|

and Σ2 = (0.9)|j−l|; (III) Σi = (1− ρi)Ip + ρi1p1
T
p .

Under the local alternative hypothesis H1, we set up µ1 = 0p, µ2 =
· · · = µg = δ/

√
nip1p and Σ1 = Ip, Σ2 = · · · = Σg = Σ1 + δ/

√
nipIp.

We consider the sample size ni = 100 and the dimension p = ⌈nκ⌉ with
κ = (5/12, 6/12, 7/12, 8/12, 9/12, 10/12). Here we consider two choices of
the number of groups g = 2, 30. Additional simulation studies with larger
sample sizes have also been considered.
Table 1 reports the empirical type I error at the nominal level α = 0.05
under the null hypothesis. The directional p-value is more accurate than
its competitors in terms of the empirical type I error in this small sample
setting. At the same time, BF is not stable in the setting with increasing
correlation. In addition, Sko1 and Sko2 perform well when κ or g is small,
while LRT is not accurate even for small κ and g.
With larger sample sizes the results in Table 2 for g = 2 indicate that
when increasing the sample size all tests will not be valid when p is larger
than nκ, for some points of κ, although a larger κ seems to apply for the
directional test. The performance in terms of type I error also depends on
the true underlying structure of covariance matrices.
We also investigate the performance in terms of local power of the tests.
We report the results of corrected power which is based on the corrected
type I error, i.e. the 5% quantile of empirical p-value under H0. Figure
1 shows that all tests have similar local power with the setting g = 2.
However, when increasing the number of groups, DT, Sko1 and Sko2 are
more powerful than that of LRT.

Acknowledgments: The author Caizhu Huang thanks Guangzhou Uni-
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FIGURE 1. Empirical power functions of tests for hypothesis (1) under local
alternative, for different values of δ and fixed κ = 7/12. The left and right panels
correspond to the result with g = 2 and g = 30, respectively.

versity - University of Padova joint PhD program.
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Abstract: In this work, we suggest a framework to fit fractional polynomi-
als based on the Bayesian Generalized Nonlinear Models (BGNLM, Hubin et
al, 2021). A version of the Genetically Modified Mode Jumping Markov Chain
Monte Carlo (GMJMCMC) algorithm (Hubin et al, 2020) is adopted. Prelim-
inary simulation runs show promising results in terms of identifying the data
generation mechanism: The suggested approach uniformly outperforms the exist-
ing Bayesian fractional polynomial framework of Sabanés Bové and Held (2011)
both in terms of Power and false discovery rate (FDR). Also, the performance
is on par (somewhat better) with that of frequentist fractional polynomials of
Royston and Altman (1994). Still, the results indicate that further work on the
priors is likely to improve the performance even further.

Keywords: Bayesian model selection; MCMC; Fractional Polynomials.

1 Model and inference

Fractional polynomials (FP) were introduced by Royston and Altman
(1994) for nonlinear regression modelling. A transformation of each co-
variate, from a set of possible functions, which includes the identity
(F0 = {x}), 7 simple functions (F1 = {x−2, x−1, x−0.5, log x, x0.5, x2, x3}),
and 8 interactions based functions (F2 = {x−2 log x, x−1 log x, x−0.5 log x,
log x log x, x0.5 log x, x log x, x2 log x, x3 log x}), is performed and the trans-
formed variables are added to the linear model. Let D be indexes of the
set {F0

⋃
F1

⋃
F2}. Furthermore, let a function ρk(x) = {F0

⋃
F1

⋃
F2}k,

k ∈ D of the input covariate x be called a polynomial term (PT). In con-
trast to existing methods, such as Bayesian fractional polynomials (BFP) of

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Sabanés Bové and Held (2011), we study fractional polynomial regression
in the context of BGNLM (Hubin et al, 2021),

Y ∼ f (y|µ(X);ϕ) (1)

h (µ(X)) = α+
m∑
j=1

∑
k∈D

γjkβjkρk(xj), (2)

where f denotes the parametric distribution of Y belonging to the exponen-
tial family with mean µ(X) and dispersion parameter ϕ. The function h is
a link function, α and βjk, j ∈ {1, ...,m}, k ∈ D are unknown parameters,
and γjk is the indicator variable which specifies whether the PT ρk(xj) is
included in the model. The vector M = {γjk, j ∈ {1, ...,m}, k ∈ D} fully
characterizes a model in terms of which PTs are included. We define the
prior for M by

P (M) ∝ I (|M | ≤ q)

m∏
j=1

∏
k∈D

a
γjk

k . (3)

Here, |M | =
∑m

j=1

∑
k∈D γjk is the number of PTs in the model and q is the

maximum number of PTs allowed per model. The factors a
γjk

k , 0 < ak < 1
are prior penalties of including individual PTs. We then consider standard
Jeffreys priors (Jeffreys, 1946) as in Hubin et al (2021). For inference, we
adopt the GMJMCMC algorithm from Hubin et al (2021). As FPs are a
specific case of BGNLM with only modification transformations allowed,
the algorithm is simplified by setting Pc = 0 and Pp = 0.

2 Simulation results

For evaluating the performance of the suggested approach, a modification
of the ART study (Royston and Sauerbrei, 2008) is proposed: We change
the original data generative model by including an x0.5

1 + x1 effect instead
of x−0.2

1 and by modifying the effect of x3 to x−0.5
3 + x−0.5

3 ∗ log(x3 + ε),
making the problem more challenging. The true model is

y = x0.5
1 +x1+x−0.5

3 +x−0.5
3 ∗log(x3+ε)+x4a+x−1

5 +log(x6+ε)+x8+x10+ϵ,

where x4a denotes the second level of x4 and ε = 0.00001 is a small positive
number required for numerical stability. Also, we assume ϵ ∼ N(0, σ2) and
run 9 different scenarios with σ2 ∈ {6.25e− 1, 1.25e− 1, 2.50e− 2, 5.00e−
3, 1.00e−3, 2.00e−4, 1.00e−4, 2.00e−5, 1.00e−7} allowing to quantify the
performance under different signal to noise ratios. For the model priors, we
used q = 20 and p = 20. Further, ak was chosen such that log ak = − log n
for ρk ∈ F0, log ak = −(1 + log 2) logn for ρk ∈ F1, and log ak = −(1 +
log 4) log n for ρk ∈ F2.
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FIGURE 1. Left panel: Overall Power estimates for the data generative PTs
for BGNLM (black), MFP (red), and BFP (green). Right panel: Overall Power
estimates for detecting any function of the data generative covariates by BGNLM
(black), MFP (red), and BFP (green).

BGNLM was fitted by GMJMCMC using the EMJMCMC package available
at http://aliaksah.github.io/EMJMCMC2016/. The simulations for each
σ2 were run on 32 parallel threads 100 times. Each thread was run for
20, 000 iterations with a mutation rate of 250 and the last mutation at
iteration 15, 000. The population size of GMJMCMC algorithm was set to
20. For detection of PTs, the median probability rule was used (Barbieri
and Berger, 2004).
For comparison, the frequentist version of multivariate fractional polyno-
mials (MPF), was run using the R package mfp by Heinze et al (2021). We
allowed for fractional polynomials of maximal order 2, and used a signifi-
cance level α = 0.05. Further, BFP of Sabanés Bové and Held (2011) was
run using the R package bfp by Sabanés Bové et al (2022) with flat priors
(hyperparameter for hyper-g prior equal to 4) and sampling to explore the
posterior model space. Also, in this case, the maximal allowed order of the
fractional polynomials was set to 2. For BFP, the median probability model
(Barbieri and Berger, 2004) was also used for the detection of PTs.
Then, for each case for the three compared methods (BGNLM, MFP, BFP),
100 repetitions of 20 simulations were sampled with replacement to boot-
strap the medians and 95% confidence intervals of the evaluation metrics.
These metrics include Power (overall PTs, for individual PTs - strict, and
for individual covariates - soft), FDR (w.r.t. individual PTs - strict and
w.r.t. individual covariates - soft). Also for the BGNLM approach, the best
found marginal posteriors were evaluated.
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FIGURE 2. Left panel: Individual power estimates for x−0.5
3 detected by BGNLM

(black), MFP (red), and BFP (green). Right panel: Best log marginal posteriors
found with GMJMCMC (black) and those of a data generative model (blue).

In Figure 1, we see that the overall Power of detecting both the data gen-
erative TPs and any functions of the data generative covariates grow as we
increase the signal to noise ratio for all three compared methods. For the
strict definition of Power, BGNLM and MFP are uniformly outperforming
BFP. And for both the strong and the weak signal, BGNLM outperforms
significantly MFP. For the medium signal, they are on par except for the
settings of σ2 = 0.001, for which MFP performs better. Overall, in 6 of 9
settings, BGNLM is significantly better, in 2 BGNLM and MFP are on par
with each other, and in 1 MFP is significantly better than BGNLM. For
the soft definition of Power counting detection of any function of the true
covariates as a true positive, we quickly (at σ2 = 0.125) reach 1 for all the
three methods. For σ2 = 0.625, MFP and BFP with a median Power of
above 90% outperform significantly BGNLM with a median Power of just
above 85%. For BGNLM, the reason for both the strict and soft definitions
of Power to grow is the ability to recover x−0.5

3 , which is depicted in Fig-
ure 2. This particular PT is significantly better detected by MFP and BFP
than by BGNLM. At the same time, the term x−0.5

3 ∗ log(x3 + ε) is never
detected by any of the methods. And the term x0.5

1 is never detected by
BGNLM (all other data generative PTs are always recovered by BGNLM).
MFP and BFP have their limited Power due to not always detecting x0.5

1

and some other data-generative PTs. Remarkably, for x−0.5
3 ∗log(x3+ε) and

x0.5
1 the detection is very challenging since other similar terms are present

in the data generative process: For x−0.5
3 ∗ log(x3 + ε), we have x−0.5

3 with
a correlation of 0.9379. For x0.5

1 , we have x1 with a correlation of 0.9978.
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FIGURE 3. Left panel: overall FDR estimates by BGNLM (black), MFP (red),
and BFP (green) when only allowing for data generative PTs to be counted as true
positives. Right panel: overall FDR estimates by BGNLM (black), MFP (red),
and BFP (green) when allowing any function of the data generative covariates to
be counted as true positives.

For both the strict and the soft definition of FDR depicted in Figure 3,
we see that it decreases with the increased signal for MFP and BFP, but
increases for BGNLM. The latter is a bit unexpected and it likely happens
due to multiplicities and a huge number of highly correlated PT to the data
generative ones. As the signal to noise ratio increases, the likelihood part of
the posterior becomes more important paying off for potentially including
these terms. For the log marginal posteriors depicted in the right panel of
Figure 2, we still see that for all signal to noise ratios except the highest one,
models similar to or better than the data generative one were discovered.
These two facts indicate that the prior inclusion probability should decrease
as the signal to noise ratio increases in BGNLM. Alternatively, a hyper g-
prior for the parameters from BFP should be studied within the context
of BGNLM. Having said that, BGNLM is still uniformly outperforming
BFP in terms of the strict definition of FDR. In this sense, BGNLM is
also significantly better than MFP for 5 settings out of 9 corresponding to
those with the strongest noise. For the three largest signal to noise ratios,
however, MFP is doing better. And for σ2 = 2e − 04, BGNLM and MFP
perform similarly. In terms of the soft definition of FDR, we see that BFP
and MFP only detect wrong PTs of the true covariates for all of the noise
levels below 0.625. At the same time, BGNLM starts to recover a few TPs of
the wrong covariates for the strongest signal to noise ratios indicating once
again that the model and/or parameter priors should be more conservative.

482



Hubin and De Bin

3 Discussion

In this paper, we studied how BGNLM fitted by GMJMCMC introduced
in Hubin et al (2021) can deal with fractional polynomials. The approach
was then compared to the existing implementation of MFP by Heinze et
al (2022) and the implementation of BFP by Sabanés Bové et al (2022).
The simulation study shows promising results of BGNLM. It uniformly
outperforms BFP in terms of a strict definition of Power and FDR. Also,
the performance is on par with that of MFP. At the same time, we see a
strong indication that further work on the priors is likely to improve the
performance even further.
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Abstract: When estimating the population sizes of numerous species, modelling
them jointly can be advantageous. It allows for the inclusion of correlation be-
tween the species and the borrowing of information. We base this simulation
study off data for deer count data in the Republic of Ireland which has spatial
data on two different levels: counts at a 10 km2 grid and recorded deaths at
a county level. We propose using a Conditional Autoregressive approach with
correlations and spatial precision parameters to differ between the species.

Keywords: Joint Species Modelling; Spatial Statistics; Spatial Modelling

1 Introduction

In the Republic of Ireland, there are three main species of deer: Fallow
(Dama dama), Red (Cervus elaphus), and Sika (Cervus nippon). Both Fal-
low and Sika deer have been introduced to the Republic of Ireland, with
an on-going debate as to whether Red deer are native or introduced.
Gaining an accurate estimation of the population of each species would
undoubtedly aid in efforts when investigating diseases, disease transfer in
livestock from wildlife and forest health. Previous studies have investigated
the distributions of the different species across the island of Ireland, but
have not investigate the impacts of the differing land types or correlation
that exists between the species. For this problem we have data on the three
species at two distinct spatial levels. Firstly, we have the number of each
species sighted at a 10km2 grid across the Republic of Ireland. For each
species, we also have the number of recorded deaths at a county level.
Before we implement our models on the data, we perform a simulation
study. In this study we investigate the use of Conditional Autoregressive

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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models, and show that it can be used for such a problem and the associated
benefits.

2 Simulation Study

For this study, we investigate the use of Conditional Autoregressive models
for correlated multi-species data. We run our simulations for one, two and
three species scenarios, but show only the modelling for the three species
case. The first level of data is counts at a gridded level, similar to the 10km2

grid for the sightings of deer. The second is at an accumulated or county
level, similar to the county structure for the culled data.
For the three species scenario:

yji ∼ Pois(λji)

log(λji) = XT

i βj + Sji

S ∼ MVN(0, [ϕ⊗ (D − αA)]−1)

ϕ = C

 τ1(1− ρ223) (ρ13ρ23 − ρ12)
√
τ1τ2 (ρ12ρ23 − ρ13)

√
τ1τ3

(ρ13ρ23 − ρ12)
√
τ1τ2 τ2(1− ρ213) (ρ13ρ12 − ρ23

√
τ2τ3

(ρ12ρ23 − ρ13)
√
τ1τ3 (ρ12ρ13 − ρ23)

√
τ2τ3 τ3(1− ρ212)


C = 1

1−ρ2
12−ρ2

13−ρ2
23+2ρ12ρ13ρ23

βji ∼ N (0, 10)

α ∼ Unif(0, 1)

τj ∼ Γ(2, 0.5)

ρ ∼ Unif(−1, 1)

where j indicates species, XT
i are the associated percentages of land cover-

ings for square i, α is the spatial dependence parameter, ρ12 is the correla-
tion between species 1 and 2, ρ13 is the correlation between species 1 and
3 and ρ23 is the correlation between species 2 and 3. We also allow τ , the
spatially varying precision parameter, to vary per species.
For the recorded deaths at county k:

zjk ∼ Pois(γjk)

γjk = κj ×
∑
i in k

λi

κj ∼ Unif(0, 1)

where κ is a death rate, which we can differ across species but remains
constant across the counties.
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3 Results

We investigate the models in two phases, the first using the grid level data
only and then including the accumulated county level data.
We simulated a 100 × 4 land cover matrix, X, on a 10 × 10 grid and group
the squares into 5 counties. The models were run using the rstan package,
for 5,000 iterations with a warm-up iteration period of 2,500 across 4 chains.
This left 10,000 post warm-up draws for estimation.

3.1 Grid Level Data Only

For the model only including grid level data, we investigate the convergence
of the parameters τ , ρ, α and β. Figure 1 illustrates the 95% credible
intervals and true values for the underlying parameters of the model.
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5.0

α β1, 1 β1, 2 β1, 3 β1, 4 β2, 1 β2, 2 β2, 3 β2, 4 β3, 1 β3, 2 β3, 3 β3, 4 ρ12 ρ13 ρ23 τ1 τ2 τ3

FIGURE 1. 95% Credible Intervals for parameters α, β, ρ and τ . The true values
of these parameters is shown by the red star.

In Figure 1 βj,n represents the nth beta coefficient for species j. It is clear
some intervals are wider than others, particularly for τ3, the spatially vary-
ing precision parameter for species 3. For these intervals to be narrower,
the model may possibly need to be run for more iterations.

3.2 County and Grid Level Data

When we include the county level recorded deaths, we add the additional
cull percentage parameter κ. In this study, we keep κ constant within
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FIGURE 2. 95% Credible Intervals for parameters α, β, κ, ρ and τ . The true
values of these parameters is shown by the red star.

species. Similar to Figure 1, Figure 2 shows the 95% credible intervals
for the parameters associated with the full model.
Similar to the model that uses only grid level data, we notice the wider
interval for τ3 than any other parameter.

4 Conclusions and Future Work

By jointly modelling the species, we can account for between species corre-
lation, borrow information as well as outputting interpretable coefficients
for land cover per species. Computationally, these models take approxi-
mately 70 minutes to run on the 10 × 10 grid. Applying this to the real
data will take significantly longer due to the increase in both the number
of squares (approximately 8 times larger) and counties (actual data has 26
counties).
Developing these models further, we plan to investigate death rates, κ,
that also vary by county. This may reflect reality more appropriately than
a constant κ per species as legislation on hunting in the Republic of Ireland
can change from county to county. We would also like to investigate the
impact of allowing α, the spatial dependence parameter, vary per species.
However, this would increase the computational complexity of the models.
One of the final items we would like to examine is to include a detection
probability. The addition of a detection probability might correspond well
to reality, but may not be supported by the actual data. The final step is
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to then apply our models used above to the deer data for the Republic of
Ireland.
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Number SFI 18/CRT/6049.
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1 Prague University of Economics and Business, Czech Republic

E-mail for correspondence: malai@vse.cz

Abstract: The duration of the unemployment spell provides information on the
situation in the labour market as well as the more frequently used unemployment
rate. There are two available data sources on the duration of unemployment in
the Czech Republic. In the text, we model the distribution of the duration of
the unemployment spell based on data from the Labour Force Sample Survey
provided by the Czech Statistical Office (aggregated and individual data) and
aggregated data from the database of registered unemployed people published by
the Ministry of Labour and Social Affairs. Two parametric lognormal distribution
is used as a model for the period from 2000 to 2019; methods of survival analysis
and maximum likelihood estimates of parameters are used for individual data;
the minimum chi-squared method is applied for aggregated data. We compare
the time series of estimated parameters and median duration, discuss differences
concerning different definitions of the being unemployed state, the exact meaning
of the analysed variable and the impact of incomplete data on results.

Keywords: unemployment; aggregated data; incomplete data.

1 Introduction

The unemployment rate, the frequently used indicator of the labour market
situation, and the median length of unemployment are basic measures but
quite different in their reaction to the labour market. Unemployment time
decreases when many employees lose their jobs, and, although people are
not finding work, the unemployed with short periods of unemployment
prevails (the unemployment rate is rising). In the period of a recession or
crisis, people cannot find a job, and the duration of the unemployment spell
will increase.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Available datasets and methods

The source of data on available job applicants, who are registered by the
labour offices, is the Ministry of Labour and Social Affairs (referred to
as MoLSA data). All registered unemployed people are included with the
exact date of the end of previous job (exact unemployment spell duration
is known), but the database is limited to registered people.
The Labour Force Sample Survey (LFSS; Eurostat 2022) is harmonised
through the European Union and is performed by the Czech Statistical
Office as a quarterly rotating panel (sampled households are included in
the survey for one year). It covers households from approx. 23 thousand
dwellings on the territory of the whole Czech Republic (about 0.6% of
all permanently occupied dwellings), with the sample size higher than 42
thousand respondents aged over 15.
We apply two parameter lognormal distribution to model the distribution
of the unemployment spell duration (or time to reemployment). The state
”being unemployed” definition differs for MoLSA and LFSS datasets; more-
over, for aggregated data, we model unemployment duration while in the
case of individual data we can model actually time to reemployment using
methods of survival analysis for time-to-event data. The datasets describe
the same phenomenon ”unemployment” but uses different definitions.
For our modelling, we have three datasets (duration in months):

� aggregated data from labour offices; referred to as MoLSA

frequencies of the unemployed in intervals 0–3, 3–6, 6-9, 9–12, 12–24,
24+.

The analysed variable is defined as the duration of unemployment
spell. The parameters are estimated using minimum chi squared
method. We obtain two estimated parameters of variance of T if we
use a gender covariate.

� aggregated data from LFSS; referred to as LFSSa

frequencies in intervals 0–1, 1–3, 3–6, 6–9, 9–12, 12–24, 24–18, 48+.

The analysed variable is defined as the duration of unemployment
spell. The parameters are estimated using minimum chi squared
method.

� individual data from LFSS; referred to as LFSSb

We include all respondents suffering at least once during the surveyed
period from unemployment. We obtain right censored value if an in-
dividual stays unemployed, interval censored datum if an individual
finds a job. No exact values are included. The survey is conducted
quarterly, we use panel type of data and also information on the
week of interviews to update intervals. Number of unemployed varies
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in particular quarters from 600 to 2,800 with the percentage of finding
a job from 8 % to 34 %.

The model (T is time to reemployment in month)

lnT = µ+ σϵ

is applied for all data and the model

lnT = µ+ αx[gender=Female] + σϵ

is used to differentiate between gender. Random error ϵ is distributed as
standard normal resulting to T distributed as lognormal. Parameters µ
and σ are parameters of lognormal distribution, in case of using the gender
covariate of the baseline distribution for men. We obtain only one estimate
of variance parameter. To estimate the survival model, R package survival
was applied (Therneau, 2022).
Unlike some analyses (for example, Čabla and Malá, 2017), we consid-
ered all unemployed people, not only those with a period of unemployment
shorter than two years.
The graphical presentation of smoothed quarterly time series (78 time
points, Q1 2000 - Q2 2019) of estimated medians and both estimated pa-
rameters (expected and standard deviation of the logarithm of the analysed
duration) is used to compare results from all datasets.

3 Results

In our model, we obtain highly skewed estimated distributions because of
the relatively large ratio of unemployment spells longer than two years
for aggregated data or unemployment spells longer than 4 or 10 years in
individual data. It results in larger characteristics of a location in our study
and even longer times based on the individual data. This data describes
the tails using respondents with a very long spell. We do not estimate the
proportion of those, who will never reemploy.
We refer to Figure 1 for smoothed time series of estimated parameters.The
development of estimated parameters is similar for all datasets, showing
higher values and more sensible time dependence for individual data.
From the parametric point of view, the decrease during an economic boom
is driven mainly by a decrease of location parameter µ and not by the
parameter σ, which means that skewness and relative variability of the
distribution remains relatively stable.
The gender gap is visible in terms of higher parameter (and so the median)
for women than for men and higher σ (and so skewness and relative vari-
ability) for men in MoLSA dataset with no clear persistent difference in the
LFSS dataset. Gender is not supposed to be highly significant in comparing
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FIGURE 1. Estimated parameters from analysed data sources. Censored LFSSb
data in black, LFSSa data in red, MoLSA data in blue. Female dotted, male
respondents dashed curve.

labour market position but we show differences in estimated parameters.
If gender is included as a covariate into the model, no visible difference in
variance of baseline distribution is found.
We choose three distributions: pre-crisis Q2 2008, peak crisis Q1 2010 and
economic boom Q4 2018. The estimated densities are shown in Figure 2 .
For MoLSA data there is a clear shift rightwards during the crisis and then
back leftwards with a much more pronounced mode for the last economic
boom. This again suggests that much more unemployment spell is in the
lower part of the distribution than in pre-crisis levels.For LFSSb data we
can observe somewhat similar development, alas with increasing value of
the mode.

492
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FIGURE 2. Estimated densities. LFSSb solid line, LFSSa dashed dotted line,
MoLSA dashed line.

4 Conclusion

All datasets (in Malá and Čabla there is also included MoLSA data on
applicants eligible for unemployment benefits ) can be used to analyse the
same phenomenon but are of different types from the point of view of
origin, individual or aggregated form as well as there are two definitions of
the unemployed. The unemployment rate is usually applied to describe the
phenomenon and we try to describe different views to the same situation on
the labour market and the shift between time series of the unemployment
rate and median unemployment spell length.
We show that the mean and median unemployment duration decreases
at the beginning of the economic crisis, which is caused by the inflow of
newly unemployed, then slowly rises even at the beginning of economic
recovery and boom, as the layoffs are limited. Probably the persons with
lower unemployment spell are preferred for reemployment. If the economic
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boom is long and stable enough, the mean and median unemployment du-
ration starts to decrease, which can be viewed as a sign of reemployment
of persons with long unemployment spells. From the aggregated data, we
can model only the time of unemployment (as observed times of reemploy-
ment are not observed); in case of incomplete individual values, the time
to reemployment is analysed and modelled. We show similar development
of duration modelled based on different data and the impact of data to
the estimated parameters, usually, it is not reasonable to compare absolute
values of estimated characteristics or parameters.

Acknowledgments: This paper is supported by the long term institu-
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Abstract: We present in this work the model for a problem brought to us by
the Portuguese Institute for Sea and Atmosphere (IPMA): to estimate the stock
structure and the main biological parameters of the Blackspot Seabream (Pag-
ellus Bogaraveo) on the Portuguese coast (ICES – International Council for the
Exploration of the Sea – Subarea 9 – Atlantic Iberian waters) for management
purposes.
Population dynamics modelling is accomplished through a Bayesian state-space
model based on length-classes. Thus no age estimates are required. This has the
advantage of structuring the population in terms of a quantity that is directly ob-
servable, requiring no indirect estimation of age distributions according to length
which can be notoriously difficult. The main biological subprocesses considered
are growth, survival, mortality and recruitment. In the case of blackspot seabream
there is another important process to account for – sex change.

Keywords: bayesian; fisheries; nimble; state-space; stock-assessment.

1 Pagellus Bogaraveo

Blackspot seabream (Pagellus Bogaraveo) is a fish with an high commer-
cial interest. Distributes from the south of Norway to Cape Blanc, in the
Mediterranean Sea, and in the Azores, Madeira, and Canary Archipela-
gos occurring from the continental shelf to 700m deep and on seamounts.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Breeding occurs in shallow waters where the juveniles tend to remain. Sub-
sequently there is an ontogenetic migration towards deeper waters. In At-
lantic waters the main spawning period occurs during the first quarter with
a peak of spawning from March to April. It is a protandric hermaphrodite
species; most individuals are first functional males and then develop into
functional females. In the Northeast Atlantic its stock structure is unclear
and the level of mixing in the population from Gulf of Cadiz with those at
the occidental Iberian coast is unknown. Further genetic studies showed a
restricted gene flow among the populations located in the Azores and those
on the Portuguese continental slope and Madeira (Farias et al. 2019). Given
this uncertainty, and for management purposes, Portugal mainland area is
managed jointly with Spain subareas – ICES Division 9.
If proven that the Portuguese mainland stock of Pagellus Bogaraveo is
isolated from the remaining ones that might have some consequences in
terms of its management by Portuguese authorities.
The data available consists of total reported catches in numbers for 6 years
(2014 – 2019). The numbers were aggregated into length-classes.

2 State–Space Model

Let us consider two time-series running in parallel: (i) the state vector, that
is unobserved, with value Nt at time t and (ii) the observation process with
value NO

t at time t, that is observed and is a function of the state process,
t = 1, 2, . . . , T . Both state and observation process might be vectors.
Here the state process describes the true, but unobservable, population
demographics as it changes over time and its components are the numbers
of fish abundance per each of the m length-class (Mäntyniemi et al. 2015).
So, we denote the state of the population at t by Nt = (Nt,1, . . . , Nt,m).
The observation process has components that correspond to the numbers of
caught fish per length-class, i.e. NO

t = (NO
t,1, . . . , N

O
t,m). The probabilistic

structure for the state-space model (SSM) can thus be written as a set of
three probability density/mass functions:

g0(N0 | η); Initial state, (1)

gt(Nt | Nt−1, η); State process, (2)

ft(N
O
t | Nt, ψ); Observation process, (3)

where θ ≡ (η, ψ) is the parameters vector. In our Bayesian context, the
inference objectives include generating a sample from the posterior distri-
bution for the states and unknown parameters conditional on the entire
observation time series, NO

1:T =
(
NO

1 , N
O
2 , . . . , N

O
T

)
. We consider a similar

notation for the state vectors, N1:T = (N1, N2, . . . , NT ). Denoting by π(θ)
the prior distribution of the parameters, the joint posterior distribution can
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FIGURE 1. Representation of the biological subprocesses sequence that cause
the evolution of the population from year t− 1 to year t.

be written as

π(N0:T , θ | NO
1:T ) ∝ π(θ)g0(N0 | η)×

T∏
t=1

gt(Nt | Nt−1, η)ft(N
O
t | Nt, ψ).

The evolution from Nt−1 to Nt will be the result of a sequence of stochastic
and deterministic subprocesses which we assume they are acting on the
population sequentially but instantaneous.

2.1 Formulation

The yearly state process consists of six main subprocesses: growth, survival,
mortality, reproduction and recruitment adn also sex change.
Figure 1 depicts an overview of the population evolution over period t,
where NG

t denotes the state of the population after growth; NS
t , N

C
t and

ND
t denote the respective subpopulations relating to survival, fishing mor-

tality (caught) and natural mortality. Et denotes the number of eggs pro-
duced at the beginning of period t by the mature females in the end of year
before, NM

t−1, and finally, NR
t denotes the population of recruits that enter

the population at the end of period t. The state of the population Nt at
the end of the year t is then obtained as Nt = NS

t +NR
t .

We assume that the numbers of catched fish per length-class, NO
t,i, are

centered around the value of NC
t,i, i.e. the true value NC

t,i is observed with
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errors. So we cast this assumption as the following Log-Normal model:

NO
t,i ∼ Log-Normal

(
log

(
NC

t,i + 1
)
− σ2

O

2
, σ2

O

)
.

3 Preliminary results

This is a first attempt to model the population dynamics of the Blackspot
Seabream. New developments can still be pursued. Several assumptions
were made because the model was fitted with very limited observed data.
Adding the knowledge of the biologists, in the form of highly informed prior
distributions, improved the results. The model was implemented in the R
package nimble (de Valpine et al. (2017)).
The state process defined above is highly parametrized, reflecting the com-
plexity of the system and the questions of interest. Thus, the influence of
prior distributions for some parameters must be assessed.
A major goal of the modelling was to estimate the stock size using catches
counts alone. Even with a short time-series and a relatively complex model,
we have gained useful knowledge on the biology of the fish.
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Ciência e a Tecnologia (FCT) (UID/00006/2020). We thank Instituto Por-
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data.
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Abstract: Confidence intervals are usually assessed in terms of coverage prob-
ability and interval width (or margin of error). Using these criteria, we examine
the performance of binomial proportion estimators when the success probability,
p, is small. We discuss the importance of defining the margin of error relative
to the proportion to avoid intervals that are impractically wide, or unnecessarily
narrow (requiring very large sample sizes). To obtain valid interval estimates in
a small-p regime, we propose a relative margin of error scheme that ensures that
the margin of error is compatible with the order of magnitude of p.

Keywords: Confidence interval; Proportion; Rare event; Margin of error.

1 Introduction

The problem of estimating a small binomial proportion, p, is frequently en-
countered in applied statistics. For example, in manufacturing, the occur-
rence of a defect in a manufactured component is often considered as a rare
event. In this work we consider p ≤ 10−1 as a rare-event probability, and as-
sess the performance of four common proportion estimators: Wald, Agresti-
Coull, Clopper-Pearson and Wilson (Agresti and Coull (1998); Clopper and
Pearson (1934); Wilson (1927)), when the success probability is small.
Typically, the sample size, n, required for estimation is chosen based on
setting the confidence interval margin of error to a fixed value, ϵ, and then
solving for n. An inherent challenge with this technique is that ϵ must be
defined in advance. This is not such an issue if p is moderately large, but
when p is small, the definition of ϵ is crucial to the validity of the resulting
interval. For example, ϵ = 0.05 might be considered as a reasonable margin
of error for p = 10−1, but is too large for a proportion of the order p = 10−3.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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In order to avoid such mismatches between ϵ and p, we propose a margin
of error scheme that is considered relative to the order of magnitude of p.
When interval performance is assessed in terms of both coverage probability
and the proposed relative margin of error, we have found that, for a 95%
confidence level, the four estimators perform similarly in many cases.

2 Sample Size and Performance Criteria

The most common sample size calculation for estimating a proportion with
specified margin of error is based on the Wald confidence interval, and is
given by

n =

⌈
z2α/2p

∗(1− p∗)

ϵ2

⌉
,

where ⌈·⌉ denotes the ceiling function, zα/2 is the 1 − α/2 quantile of the
standard normal distribution, and p∗ denotes an initial estimate of p. Such
an initial estimate is standard practice in sample size planning (unless the
‘default’ p∗ = 0.5 is used). For a given sample size n, and success probability
p, the expected coverage probability is

CPr(n, p) =
n∑

x=0

(
n

x

)
px(1− p)n−x1(Lx ≤ p ≤ Ux),

where Lx and Ux are the lower and upper interval bounds calculated using
x successes, and 1(·) is an indicator function taking the value 1 when its
argument is true, and 0 otherwise. The expected width, EW , is given by

EW (n, p) =
n∑

x=0

(
n

x

)
px(1− p)n−x(Ux − Lx).

The expected margin of error, EMoE, is given as EMoE = EW (n, p)/2.

3 Relative Margin of Error

The importance of setting a margin of error that is consistent with the
magnitude of p is illustrated in Table 1. Shown are the calculated Wald
sample sizes (rounded to 2 significant figures) and coverage probabilities
for p∗ = p = 10−3, corresponding to five margin of error schemes. When ϵ
is large relative to p (schemes 1, 2 and 3), the coverage is unsatisfactory,
whereas, when ϵ is small relative to p (scheme 5), the desired coverage is
achieved, but a large sample size is required. Setting an ϵ that is consistent
with the order of magnitude of p (scheme 4) produces reasonable coverage,
and in comparison to scheme 5, requires a smaller sample size.
To maintain compatibility between ϵ and p∗, we consider a relative margin
of error, ϵ̃R = ϵ/p∗. We impose ϵ̃R ≤ 1, however, ϵ̃R values close to the
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TABLE 1. Schemes with ϵ set independently of p∗

Margin of Error Scheme
1 2 3 4 5

ϵ = 4 · 10−1 ϵ = 4 · 10−2 ϵ = 4 · 10−3 ϵ = 4 · 10−4 ϵ = 4 · 10−5

n 1.0 · 100 3.0 · 100 2.4 · 102 2.4 · 104 2.4 · 106

CPr 0% 0.3% 21.3% 93.1% 95.0%

bound of 1 result in very wide intervals, and values close to the bound of
0 result in very narrow intervals (requiring excessively large sample sizes).
We recommend ϵ̃R ∈ [0.1, 0.5] and Table 2 shows that good coverage is
achieved in this scheme.

TABLE 2. Schemes with ϵ set relative to p∗

ϵ̃R
0.05 0.1 0.2 0.3 0.4 0.5 0.75

n 1.5 · 106 3.8 · 105 9.6 · 104 4.3 · 104 2.4 · 104 1.5 · 104 6.8 · 103

CPr 95% 95% 95% 94.7% 93.1% 93.1% 90.4%

Figure 1 provides a confidence interval performance comparison for p∗ =
p = 10−3 and n ∈ [10, 000, 80, 000] in terms of CPr, and the expected
relative margin of error, ϵR = EMoE/p∗. Acceptable CPr and ϵR values
are considered as 95± 1% and ϵR ≤ 0.5 respectively.
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FIGURE 1. CPr versus ϵR for p∗ = p = 10−3. Dashed (grey) line represents the
nominal CPr value. Dot-Dashed (red) lines represent the CPr and ϵR tolerances.
Sample sizes decrease from left to right, in steps of 2000.
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From Figure 1, we see that the coverage of all four estimators fluctuates
as the sample size varies. For example, the coverage of the Wald inter-
val is good at n = 16, 000, but drops below 94% at n = 18, 000 – this
phenomenon of coverage oscillation has been previously discussed in the
literature, e.g., Agresti and Coull (1998). In this particular scenario, the
Wilson and Agresti-Coull intervals perform best, with the Wilson interval
producing better coverage for n < 16, 000. In this n range, none of the
intervals satisfy the ϵR ≤ 0.5 requirement. However, when ϵR ≤ 0.5, the
Wilson and Agresti-Coull intervals have similar performance.

4 Discussion

When constructing confidence intervals for a proportion, p, it is important
that the margin or error, ϵ, be considered relative to the magnitude of p.
When p is small, failure to consider ϵ relative to p can result in poor cov-
erage, and/or intervals that are unnecessarily narrow or excessively wide.
To ensure consistency between ϵ and p, we propose the use of a relative
margin of error, ϵR = ϵ/p. We suggest restricting the range of values to
ϵR ∈ [0.1, 0.5], as values outside this range can lead to imprecision and
poor interval coverage, or impractically large sample sizes.
We have evaluated the proposed ϵR range in a variety of scenarios (values
of p, n, and nominal coverage), and found that the four interval estimators
perform similarly in many cases – albeit, here, we have only shown the
case of a 95% confidence interval for p = 10−3 due to space constraints.
Similarly, we have also found the ϵR criterion useful for evaluating the
adequacy of existing studies (also omitted here for brevity). However, ulti-
mately, ideally the approach should feed into study planning in advance of
data collection.
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Manufacturing Centre (https://confirm.ie/) funded by Science Foundation
Ireland (grant number: 16/RC/3918).
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Abstract: Distributional regression for survival data refers to the approach
whereby covariates enter the hazard function via multiple distributional parame-
ters (e.g., scale and shape) simultaneously; this is also known as multi-parameter
regression (MPR). We develop the MPR Power Generalized Weibull (PGW)
model, which, with three parameters (one scale, two shapes), encompasses vari-
ous common survival models and hazard shapes. Variable selection is challenging
in this setting (and distributional regression more generally) since covariates can
enter the model in various ways. Thus, we propose the use of a computationally
feasible adaptive lasso penalized estimation procedure for variable selection and
explore its performance using numerical studies.

Keywords: distributional regression; multi-parameter regression; parametric
modelling; penalty; survival analysis

1 Introduction

The three parameter Power Generalized Weibull (PGW) model encom-
passes key shapes of hazard function (constant, increasing, decreasing,
up-then-down, down-then-up) and a variety of survival distributions
(Weibull, log-logistic, Gompertz) which makes it a highly flexible model,
particularly in our proposed penalized MPR approach.

The Power Generalized Weibull (PGW) hazard is given by

λ(t) = τγtγ−1

(
1 +

tγ

κ+ 1

)κ−1

(1)

where τ > 0 and γ > 0 are scale and shape parameters, and κ > −1 is an
additional shape parameter controlling the baseline distribution: κ = 0 ⇒

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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log-logistic; κ = 1 ⇒ Weibull; κ → ∞ ⇒ Gompertz (Burke et al., 2020).

Taking a distributional regression approach, we then have that

log(τ) = xTβ, log(γ) = xTα, log(κ+ 1) = xTω

where x = (1, x1, . . . , xp)
T is a vector of covariates with regression

coefficients, β = (β0, β1, . . . , βp)
T , α = (α0, α1, . . . , αp)

T , and ω =
(ω0, ω1, . . . , ωp)

T , respectively; the log-link functions for τ and γ ensure
their positivity, while the slightly different link function for κ ensures that
κ > −1. Burke et al., (2020) found that the full distributional regression
generality of allowing κ to depend on covariates is typically not required,
and, therefore, we follow their suggestion that xTω = ω0; however, the
methods of this paper extend straightforwardly to the case where κ de-
pends on covariates.

2 Penalized PGW Model

Variable selection is naturally more involved in this setting since there
are various possibilities for a given covariate: it may appear in the scale
(τ) but not the shape (γ), the shape but not the scale, both parameters,
or neither parameter. Indeed, more classical variable selection procedures
are hampered here by the fact that there are 22p sub-models; this, of
course, is a general issue in distributional regression where there are 2d×p

sub-models when there are d regression components. Moreover, the use of
p-value-based selection is also more subtle since the net effect of a covariate
may require that both scale and shape effects should be included even if
one is non-significant when examined on its own (Burke and MacKenzie,
2017). Additionally, even in classical single parameter regression (i.e.,
d = 1), stepwise procedures are known to be unstable due to their inherent
discreteness (i.e., covariates are either “in” or “out”).

For all of the above reasons, we consider a penalized regression approach
to carry out simultaneous parameter estimation and variable selection (via
parameter shrinkage). More specifically, we make use of the adaptive lasso,
which has been found to perform well in the Weibull model (Jaouimaa et
al., 2019) that we extend via the PGW. Thus, the penalized likelihood for
the vector of parameters θ = (βT , αT , ωT )T is

ℓλ(θ) =
n∑

i=1

{δi log h(ti)−H(ti)} − nλ

p∑
j=0

(wβj |βj |+ wαj |αj |), (2)

where n is the sample size, δi ∈ {0, 1} is the censoring indicator, h(t) is
the hazard given in (1), H(t) = (1 + 1/κ)[{1 + tγ/(κ + 1)}κ − 1] is the
cumulative hazard, the dependence on covariates is implicitly assumed, λ
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is the penalty tuning parameter, and wβj
= 1/β̂0j and wαj

= 1/α̂0j are the

adaptive weights where β̂0j and α̂0j maximize the unpenalized likelihood
ℓ0(θ), i.e., ℓλ(θ) with λ = 0. The presence of the absolute value function
in (2) prevents gradient-based optimization. Thus, for practical purposes,
we replace |z| with the differentiable approximation aϵ(z) =

√
z2 + ϵ2 − ϵ2,

e.g., as in Lloyd-Jones et al., (2018), which is close to |z| when ϵ is small.

The tuning parameter λ controls the level of parameter shrinkage such
that larger values lead to greater shrinkage, and, hence, sparser models. In
practice, one aims to choose the “optimal” λ value, which is akin to model
selection. We use the BIC criterion

BIC(λ) = −2ℓ0(θ̂λ) + eλ log n, (3)

where we note that ℓ0(θ̂λ) is the unpenalized likelihood function evaluated

at the penalized estimates θ̂λ (i.e., those which maximize (2)), and eλ =

tr[{Iλ(θ̂λ)}−1I0(θ̂λ)] is the effective degrees of freedom where Iλ(θ) and
I0(θ) are the negative hessian matrices for ℓλ(θ) and ℓ0(θ), respectively.
We define λ∗ to be the minimizer of (3), which we obtain using a simple
grid search due to the one-dimensional nature of the problem, and, in turn,
the estimated parameter vector θ̂λ∗ . This defines the selected model since
the zero coefficients in θ̂λ∗ correspond to the model components (scale and
shape) from which particular covariates have been dropped. In fact, since
we approximate |z|, no coefficient is set exactly to zero, but it can be made
arbitrarily close to zero by decreasing ϵ.

3 Simulation Study

We explore the performance of this procedure on simulated PGW data with

log(τi) = xT
i (−1.5, − 1.0, 0.5, 0.0, 0.0, 0.0, 1.0, 0.0)T ,

log(γi) = xT
i (0.5, 0.75, 0.0, 0.0, 0.25, 0.0, − 0.6, 0.0)T ,

where xi = (1, xi1, . . . , xi7)
T is a vector of covariates for the ith individual.

We have considered a range of κ values, sample sizes, and censoring pro-
portions, but here, we report only the results for the Weibull distribution
(κ = 1) with 25% censoring.

In Table 1, we display the performance of our proposed procedure using a
variety of metrics: C, the average number of true zero coefficients correctly
set to zero; IC, the average number of true non-zero coefficients incorrectly
set to zero; and PT, the probability of choosing the true model.
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TABLE 1. Simulation results
n θ C IC PT

oracle values: 4 0 1

500 β 3.91 0.00 0.93
α 3.90 0.00 0.91

1000 β 3.94 0.00 0.96
α 3.94 0.00 0.95

2000 β 3.98 0.00 0.99
α 3.97 0.00 0.98

4 Discussion

We can see from Table 1 that the proposed approach performs well with C
tending towards the oracle value of 4 as the sample size increases (and IC is
always equal to zero for the scenario considered). Similarly, the probability
of selecting the true set of covariates tends towards one. We have also found
that this favourable performance is maintained across a range of κ values
and censoring proportions. Moreover, although not shown here, we have
found that the inferential properties are also favourable, i.e., the bias is
low and reduces with sample size, the standard errors reduce with sample
size and are accurately estimated. This is particularly noteworthy given the
largely automated nature of the estimation/selection procedure along with
the overall flexibility of the PGW distributional regression model, which
covers various common survival distributions and (covariate-dependent)
hazard shapes. Thus, we anticipate that our proposal will be useful in
practice, and, indeed, have found this to be the case in our own real data
analysis (omitted here for brevity).

Acknowledgments: The first author would like to thank the
Irish Research Council (www.research.ie) for supporting this work
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1 Introduction and motivation

The Pareto type I (henceforth referred to as the Pareto) distribution is a
popular model in economics, finance and actuarial science, especially where
phenomena characterised by heavy tails are studied, see, e.g. Ismäıl (2004).
In finance, an application is to model stock price returns while in actuarial
science it is frequently used to model excess of losses in insurance, see Ryt-
gaard (1990). Due to its heavy tail, this distribution also plays a pivotal
role in extreme value theory see, Beirlant et al. (2004). A number of charac-
terisations for the Pareto distribution have been proposed in the literature,
see, e.g. Gupta (1973). However, only a small number of goodness-of-fit
tests have been developed in order to test the hypothesis that an observed
dataset is compatible with the assumption of being realised from this dis-
tribution. Due to the increasing popularity of the Pareto distribution we
propose new goodness-of-fit tests based on a characterisation and utilising
the empirical characteristic function (ecf).

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Test statistic

Before proceeding, we introduce some notation. LetX1, . . . , Xn be indepen-
dent and identically distributed (i.i.d.) copies from a continuous random
variable, X, with unknown distribution function F . X is said to follow the
Pareto distribution with parameter β, denoted by X ∼ P (β), if it has dis-
tribution function F (x) = 1−x−β , x ≥ 1, β > 0. Throughout, the value

of β is estimated by its method of moments estimator β̂n = Xn/(Xn − 1),
where Xn is the sample mean. Let X1:n < X2:n < · · · < Xn:n denote
the order statistics of X1, X2, . . . , Xn. The composite null hypothesis to be
tested is

H0 : X ∼ P (β), (1)

for some β > 0, against general alternatives. We propose new classes of
goodness-of-fit tests for testing (1) based on the following characterization
given in Allison et al. (2021),
Theorem 1: , Let X,X1, . . . , Xn be i.i.d. random variables from a con-
tinuous distribution with distribution function F . Let m be an integer such
that 2 ≤ m ≤ n. X1/m and min(X1, . . . , Xm) have the same distribution
if, and only if, F (x) = 1− x−β , x ≥ 1, β > 0.
Define the empirical characteristic function of X1/m by

ϕn(t) =
1

n

n∑
j=1

exp(itX
1/m
j:n )

and the ecf of the
(
n
m

)
random variables min(Xk1

, . . . , Xkm
), 1 ≤ k1 < k2 <

· · · < km ≤ n as

ψn(t) =

(
n

m

)−1 ∑
1≤k1<k2<···<km≤n

exp(itmin(Xk1 , Xk2 , . . . , Xkm).

After some algebra and combinatorics it follows that ψn(t) can be expressed
as a single summation

ψn(t) =

(
n

m

)−1 n−m+1∑
j=1

(
n− j

m− 1

)
exp(itXj:n).

From the above characterisation it follows that if X1, X2, . . . , Xn is a ran-
dom sample from the Pareto distribution, then the difference between ϕn(t)
and ψn(t) should be close to zero. We thus suggest the following test statis-
tic:

Tn,m,a = n

∫ ∞

−∞
|ϕn(t)− ψn(t)|2wa(t)dt,

where wa(t) is an appropriate weight function which depends on a user
defined parameter a. After some algebra, we obtain easily calculable test
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TABLE 1. Various choices of the alternative distributions.

Alternative f(x) Notation

Gamma
1

Γ(θ)
(x− 1)θ−1e−(x−1) Γ(θ)

Weibull θ(x− 1)θ−1 exp
{
−(x− 1)θ

}
W(θ)

Lognormal exp

(
−1

2
(log(x− 1)/θ)2

)/{
θ(x− 1)

√
2π

}
LN(θ)

Linear failure rate (1 + θ(x− 1)) exp(−(x− 1)− θ(x− 1)2/2) LF(θ)

statistic based on the choices wa(t) = e−a|t| and w̃a(t) = e−at2 denoted by

T
(1)
n,m,a and T

(2)
n,m,a, respectively. The calculable form of the test statistics can

be expressed in terms of functionals of X1, X2, . . . , Xn. The null hypothesis

is rejected for large values of T
(1)
n,m,a and T

(2)
n,m,a. The proposed tests are

consistent against fixed alternatives. However, we omit the proof due to
page limitations.

3 Simulation study

We compare the finite sample performance of the newly proposed tests
to the traditional Kolmogorov-Smirnov (KSn), Cramér-von Mises (CMn)
and Anderson-Darling (ADn) tests as well as to a test based on the likeli-
hood ratio proposed by Zhang (2002) denoted by ZA and an integral-type
test based on a characterisation of the Pareto distribution proposed by
Obradović et al. (2015), denoted by OJ .

3.1 Simulation setting and results

Power (and size) estimates are calculated at a significance level of 5% for
sample size n = 20 using 50 000 independent Monte Carlo replications.
Since the null distribution of all the test statistics depends on an unknown
parameter, the parametric bootstrap will be used to calculate critical values
for the different tests (the number of bootstrap replications used is B =
1000). We obtain power estimates for the various alternative distributions
given in Table 1. These estimates are displayed in Table 2.
From Table 2 it is clear that each of the tests maintain the specified sig-
nificance level of 5% closely. Considering the powers obtained against the
various alternatives we see that the tests KS and OJ are less powerful
than the other tests considered. It is also evident that CV is quite pow-
erful for the gamma and linear failure rate alternatives, whilst the new
tests obtained the highest powers against gamma, log-normal and weibull
alternatives.
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TABLE 2. Empirical powers for n = 20.

Dist KS CV AD ZA OJ T
(1)
3,1 T

(1)
3,2 T

(2)
4,1 T

(2)
4,2

Par(2) 5 5 5 5 5 5 5 5 5
Par(5) 5 5 5 5 5 4 4 4 4
Γ(0.8) 15 16 16 11 11 17 16 14 14
Γ(1) 39 44 42 34 34 40 43 41 40
W(0.8) 9 9 12 9 6 14 11 8 7
LN(1) 71 81 82 90 72 76 79 87 87
LN(2.5) 11 9 26 22 26 31 43 49 50
LN(3) 18 15 51 56 50 48 64 73 75
LFR(0.2) 46 53 50 41 45 49 51 48 48
LFR(0.5) 52 60 57 47 53 57 58 54 54
LFR(1) 56 65 61 53 61 62 63 60 60
LFR(1.5) 60 68 66 58 66 67 67 63 64
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1 Introduction

Structural health monitoring uses sensor data from structure buildings such
as bridges to monitor them. As these are not measured under laboratory
conditions, these data are dependent on environmental influences such as
temperature. Therefore, a model to adjust for these covariates is required
before considering the association between the sensor outputs.

FIGURE 1. Valley Bridge Sachsengraben (Bundesanstalt für Straßenwesen, 2016)

The OSIMAB (Online Safety Management System for Bridges) (OSIMAB
mCLOUD, 2020) data set consists of sensor measurements of the valley

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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bridge Sachsengraben on the motorway A45 in Germany. Among other
things, strain was measured with six strain gauges in 50 hertz and temper-
ature with six structure temperature sensors and one outer temperature
sensor in 1 hertz on September 1st 2020. The strain data was downsam-
pled to 1 hertz. In Figure 1 a picture of the bridge is shown. The strain
senors are evenly distributed on the right and left sides of the road, with
the odd named ones on the north (left) side. Temperature sensor 1 is in the
middle of the street between strain sensor 1 and 2, and temperature sensor
10 is next to strain sensor 1.

2 Conditional and Partial Covariance

Let u and v be two random variables describing two different sensor outputs
and let z denote a potentially confounding covariate, such as temperature.
First, let us assume that u, v and z are jointly normal, i.e.u

v
z

 ∼ N

µu

µv

µz

 ,

σuu σuv σuz

σvu σvv σvz

σzu σzv σzz

 . (1)

Further let

µuv =

(
µu

µv

)
, Σuv =

(
σuu σuv

σvu σvv

)
, Ψ =

(
σuz

σvz

)
.

Then for the conditional distribution of (u, v) given z we have(
u
v

)
|z ∼ N

(
µuv +

1

σzz
Ψ(z − µz),Σuv −

1

σzz
ΨΨ⊤

)
.

For estimating the conditional covariance of u and v given z

σuv|z = σuv −
σuzσvz

σzz
,

we can use the empirical versions of σuv, σuz, σvz and σzz.

Alternatively, u and v can be regressed on z, and then we can cal-
culate the covariance of the residuals. This approach is known under the
name partial covariance. The covariance of u and v regressed on z is
consistent with the conditional covariance if we assume the joint normal
distribution assumption of (u, v, z):

E

((
u−

(
µu +

σuz

σzz
(z − µz)

))(
v −

(
µv +

σvz

σzz
(z − µz)

)))
= σuv −

σuzσvz

σzz
.
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However, assuming joint normal distribution (1) for the derivation of the
conditional covariance and the use of linear regression for partial covariance
might be too restrictive. Therefore, as a generalization of the partial co-
variance approach, we allow nonlinear regression functions fu(z) and fv(z)
when modeling the association between the sensor outputs u and v and the
covariate z, respectively. Then we have for the sensor outputs u and v

u = fu(z) + ϵ,

v = fv(z) + ξ,
(2)

where the regression functions fu(z) and fv(z) are fitted by penalized
splines as implemented in mgcv R-package (Wood, 2022). The partial co-
variance is then estimated as the covariance of the residuals ϵ and ξ.

3 OSIMAB

The data of strain sensor 1 and temperature sensors 1 and 10 are shown in
Figure 2. Looking at it, the strain could be dependent of the temperature.

FIGURE 2. Strain (Sensor 1) and Temperature (Sensor 1 and 10) Data

Therefore, for estimating the partial covariance, the data is modeled as in
Equation (2) where the response variables u and v are the outputs of the
respective strain sensors, the covariate z is the output of the temperature
sensors 1 or 10 and fu and fv are penalized cubic regression splines; k-folds
cross validation is used to determine the tuning parameter and the gam

function of the mgcv R-package is used to fit the model.
Then the empirical covariance of the residuals are calculated. In Figure 3
the covariance of the strain data, i.e. the marginal covariance, and the par-
tial covariance, i.e. the covariance of the residuals is shown in dependency
of the 1st and 10 temperature sensor, respectively. As can be seen in Fig-
ure 3, the covariance of the strain data is much higher than the covariance
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of the residuals, with the covariance of the more fluctuating temperature
(sensor 1) being lower than that of the more constant temperature (sensor
10). Furthermore, there seem to be some rather structural differences be-
tween the marginal covariance (top) and the partial version if regressed on
sensor 1 (bottom left).

FIGURE 3. Covariance of the Strain Data and Residuals (Temperature sensor 1
and 10)
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1 Introduction

The Pareto distribution is a heavy-tailed distribution that was originally
developed in the 19th century to model the distribution of income among
individuals Pareto (1897). However, in the years prior to its introduction,
it has been extensively modified and changed to produce several variants,
referred to as the Type I, II, III, and IV Pareto distributions. The focus
of this paper is on the Pareto Type II distribution where the location
parameter is zero, also known as the Lomax distribution.
We say a random variable X follows a Lomax distribution with scale pa-
rameter σ > 0 and shape parameter β > 0, if its cumulative distribution

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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function (CDF) is given by F (x;σ, β) = 1−
[
1 +

(
x
σ

)]−β
, x > 0.

This paper aims to discuss and study a number of different methods for ob-
taining the estimators of the scale (σ) and shape (β) parameters of the Lo-
max distribution. We start by considering the myriad different traditional
methods of estimation proposed for related distributions, including the L-
moment estimator, the probability weighted moments estimators (PWM),
the maximum likelihood estimators (MLE), and method of moments esti-
mators (MME). We then go on to propose the use of so-called ‘minimum
distance estimators’ (MDEs) in the hope that these will be competitive
alternatives to the more traditional options. The estimators are compared
to one another via a comprehensive numerical study involving Monte Carlo
simulations where the finite sample variance, bias, and mean squared error
(MSE) of each estimator is approximated. In addition, an omnibus mea-
sure allowing one to gauge the MSE of the estimation of both σ and β
simultaneously is also employed in the simulation study.

2 Estimation of parameters

For the remainder of the section, we assume that we have data
X1, X2, . . . , Xn which is i.i.d. from the Lomax distribution with param-
eters β > 0 and σ > 0. The order statistics based on this sample are
denoted using X1:n ≤ X2:n ≤ · · · ≤ Xn:n. The estimators used are:

� The traditional MME and MLE

� L–moment estimators (LME):

β̂LM =
l2

2l2 − l1
and σ̂LM =

l21 − l1l2
2l2 − l1

.

� Probability Weighted Moment Estimators (PWM): Proposed
by Greenwood et al. (1990), the PWMs are given by

β̂PW =
2M̂1,0,1 − M̂1,0,0

4M̂1,0,1 − M̂1,0,0

and σ̂PW =
2M̂1,0,0M̂1,0,1

M̂1,0,0 − 4M̂1,0,1

.

with M̂1,0,0 = 1
n

∑n
j=1 Xj:n, and

M̂1,0,v = 1
n

∑n
j=1

(n−j)(n−j−1)···(n−j−v+1)
(n−1)(n−2)···(n−v) Xj:n v = 1, 2, . . . .

� MLE of the Lomax distribution adjusted for bias: we consider
a bias-adjusting approach for the MLEs used to reduce the bias of
the MLE’s to order O(n−1) proposed by Giles et al., 2011. Denote
these estimators by σMLB and βMLB .
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� Cramér-von Mises (CVM) minimum distance estimators:
This distance measure permits a simple calculable form given by

DCM
n (σ, β) =

1

12n
+

n∑
j=1

(
1−

(
σ

X(j) + σ

)β

− 2j − 1

2n

)2

.

The resulting estimators for σ and β are denoted by (σ̂CM , β̂CM ) =
argmin(σ,β) D

CM
n (σ, β).

� ‘Squared difference’ (SD) minimum distance estimators: An
alternative to the Cramér-von Mises distance measure with the fol-
lowing tractable calculation form:

DSD
n (σ, β) =

n∑
j=1

(
1−

(
σ

X(j) + σ

)β

− j

n+ 1

)2

.

(σ̂SD, β̂SD) = argmin(σ,β) D
SD
n (σ, β).

� The ϕ--divergence minimum distance estimators: represent a
broad class of distance measures that describe the distance between
two densities f and g, and is defined as:

δ(f, g) = E

[
ϕ

(
f(X)

g(X)

)
g(X)

f(X)

]
, (1)

where X is a random variable from a distribution function with
density f(x) and ϕ(·) is a convex function such that ϕ(1) = 0

and ∂2ϕ(x)
∂x2

∣∣∣
x=1

= ϕ′′(1) > 0. In this setting, we will estimate the

true density using the kernel density estimator, f̂h(x) with choices
ϕ(t) = t log(t) for Kullback-Liebler (Phi.kl) and we denote the esti-

mator by (σ̂KL, β̂KL), ϕ(t) = (t−1)2 for the chi-square (Phi.X2) and

we express the resulting estimator as (σ̂CS , β̂CS) and ϕ(t) = |t−1| for
total variation (Phi.tv) ϕ-divergence distance measure, we designate

the resulting estimator by (σ̂TV , β̂TV ).

3 Results

3.1 Monte Carlo Simulation Settings

The Monte Carlo was conducted by simulating MC = 10 000 samples of
size n = 50 from the Lomax distribution using a variety of parameter
settings, σ = 2 and β = 1.1, 1.5. All calculations were conducted using R
Core Team (2021). In addition to calculating the MSE for each parameter
separately, a combined MSE yielding a single value was also calculated as
follows:

Accuracy =
(
β̂mc − β

)2
+ (σ̂mc − σ)

2
,
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TABLE 1. Comparison of different estimation methods for different values of β,
σ = 2 and n = 50.

METHODS MLE MLE.b LME MDE.CvM MDE.LS MDE.Phi.X2 MDE.Phi.tv MDE.Phi.kl MME
β = 1.1, σ = 2 n = 50

Mean
β̂ 1.3013 1.083 1.591 1.2593 1.1278 -2.2916 1.1914 1.3013 2.7323
σ̂ 2.3834 1.7327 3.1678 2.2708 1.9488 4.3988 5.9274 2.3834 10.9364

Var
β̂ 0.2896 0.218 0.1823 0.2943 0.1605 402.8793 16.8154 0.2896 0.6134
σ̂ 2.3852 1.7039 1.6936 2.4577 1.3252 54.7068 390.7247 2.3852 42.2581

Bias
β̂ 0.2013 -0.017 0.491 0.1593 0.0278 -3.3916 0.0914 0.2013 1.6323
σ̂ 0.3834 -0.2673 1.1678 0.2708 -0.0512 2.3988 3.9274 0.3834 8.9364

MSE
β̂ 0.3301 0.2183 0.4234 0.3197 0.1613 414.3418 16.8221 0.3301 3.2779
σ̂ 2.532 1.7751 3.0573 2.5308 1.3277 60.4555 406.1103 2.532 122.1127

Accuracy 2.8621 1.9934 3.4808 2.8505 1.489 474.7972 422.9323 2.8621 125.3906

β = 1.5, σ = 2 n = 50

Mean
β̂ 1.8075 1.4907 1.9476 1.5532 1.3706 1.2414 2.3827 1.7724 3.3631
σ̂ 2.5945 1.9332 2.8333 2.1127 1.794 4.8198 8.1012 2.5359 7.4092

Var
β̂ 28.2018 28.2386 1.8872 2.046 1.7671 55.6171 88.5542 6.9246 57.97
σ̂ 83.7788 83.8265 6.9077 7.4746 6.3601 309.369 1114.9427 24.3918 170.2952

Bias
β̂ 0.3075 -0.0093 0.4476 0.0532 -0.1294 -0.2586 0.8827 0.2724 1.8631
σ̂ 0.5945 -0.0668 0.8333 0.1127 -0.206 2.8198 6.1012 0.5359 5.4092

MSE
β̂ 28.2935 28.2358 2.0873 2.0486 1.7837 55.6784 89.3244 6.9981 61.4352
σ̂ 84.1239 83.8226 7.6013 7.4865 6.4019 317.2894 1152.0563 24.6766 199.5376

Accuracy 112.4173 112.0584 9.6886 9.5352 8.1856 372.9678 1241.3807 31.6748 260.9727

3.2 Discussion

When comparing the class of estimators based on minimum distance mea-
sures with all of the remaining methods, one can readily see that the
MDE.LS and MDE.CvM estimators are the best performers in terms of
MSE for the small sample size ; the LME is still an excellent competitor,
but the MLE and MLE.b estimators perform relatively poorly in terms
of MSE in these cases. However, for larger sample sizes,(tables not shown
here) the MLE and MLE.b clearly outperform the entire MDE class of
statistics. Interestingly, the LME remains competitive here too, but is al-
most never found to have the best MSE performance. The overall worse
performing estimator is MME regardless of which value of β or σ is used.
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Abstract: Quantifying sources of genetic change is essential for identifying key
breeding actions and optimising breeding programmes. However, the observed
genetic change is a sum of contributions from different groups of individuals
(often referred to as selection pathways), which are difficult to disentangle and
quantify due to the complexity of breeding programmes. Here we extended a
simple method to analyse the contributions of groups to the genetic variance.
Our approach showed the importance of analysing the partition of the genetic
mean and variance rather than just the genetic mean and demonstrated that the
contributions are not necessarily independent.

Keywords: Partitioning method; Genetics; Mixed-Effects Models.

1 Background

We aim to genetically improve populations in animal breeding by select-
ing the best individuals as the next generation’s parents. Ideally, we would
select the parents based on their true genetic/breeding value, but we can
never know that values. Alternatively, we can select parents based on i)
phenotypic value, which is the expressed trait and has a medium/low ac-
curacy; ii) estimated breeding value, which may have high accuracy since
it considers the phenotypic values of the individuals and all its relatives.
Thus, an important step is to understand where genetic progress comes
from and which group of animals creates the most genetic gain.
Let a be a vector of breeding values sampled from a normal distribution
with mean 0 and covariance Aσ2

a. We can write a as a linear combination of
the individual’s ancestors breeding values and individual’s deviation from
ancestors a = Tw. We can define T as a triangular matrix of expected

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).

521



Oliveira et al.

gene flow between ancestors and individuals, and w ∼ N
(
0,Wσ2

a

)
as

the Mendelian sampling terms representing deviations, with W being a
diagonal matrix of variance coefficients and σ2

a the base population ge-
netic (additive) variance. Assuming a factor with p groups and for any set∑p

j=1 Pj = I, Garćıa-Cortés et al. (2008) partitioned the genetic mean into
contributions of each level by defining Tj = TPj , and further partitioned
the contribution of each group to breeding values a priori using the equal-
ity a = (T1,T2, . . . ,Tp)w = a1 +a2 + . . .+ap. Garćıa-Cortés et al. (2008)
further showed that these partitions can be estimated from data collected
in breeding programmes (posteriori) by first estimating the breeding val-
ues â = E (a|y) from phenotype data (y). Since a is a function of variance
components in the mixed-effects model, we can estimate a and w by re-
placing their REML estimates â = (T1,T2, . . . ,Tp) ŵ = â1 + â2 + . . .+ âp.
By summarising these partitions, they quantified the contribution of each
group (i.e. males vs. females, countries, AI centres) to the time-trend in
genetic mean.

2 Methods

2.1 Partitioning of genetic trends

Here we extend the partitioning method to analyse the contribution
of groups to genetic variance. Variance of breeding values is, a priori,
V ar (Tw) = TWT Tσ2

a. Thus, we can partition genetic variance as

V ar (a) = V ar [(T1,T2, . . . ,Tp)w] =

p∑
j=1

TjWT T
j σ2

a + 2

p−1∑
j=1

p∑
j′=j+1

TjWT T
j′ σ

2
a

=

p∑
j=1

σ2
aj

+

p−1∑
j=1

p∑
j′=j+1

σaj ,aj′ (1)

While this “theoretical”partitioning involves matrix products, we can also
summarise partitions a1 +a2 + . . .+ap (calculated via T−1) by calculating
variance of each group level contribution f (a) = V ar (aj) and covariance
of each pair of group level contributions f (aj ,aj′) = Cov (aj ,aj′). The
partitions can be summarised in many ways to quantify the contribution
of different groups to change in genetic variance over time. The partition-
ing method can be then only applied for a priori or true breeding values.
Although the methodology has been developed to a priori or true breed-
ing values, we can use methods from Sorensen et al. (2001) to estimate
partitions of genetic variance from data collected in a breeding programme
(posteriori).

2.2 Statistical model and computational approaches

In the previous subsection, we assumed we knew the true breeding values.
Consequently, the same assumption is applied to additive genetic mean and
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variance contributions. However, in reality, we use phenotype, pedigree, and
genomic information to predict the breeding values â and make inferences.
We fitted standard animal model:

y = Xb + Za + e,
a ∼ N

(
0, σ2

aA
)
, and e ∼ N

(
0, σ2

eI
) (2)

where y is a vector of observed phenotypes, b is a vector of fixed effects
with design matrix X, a is a vector of random animal effects with design
matrix Z, and e is a vector of random residuals. It is assumed that a ∼
N

(
0,Aσ2

a

)
and e ∼ N

(
0, Iσ2

e

)
, where A is the pedigree-based numerator

relationship matrix, while σ2
a and σ2

e are respectively known additive and
residual variances.
The directed acyclic graph (DAG) representation of the model (2) con-
sidering only intercept as the fixed effect is illustrated in Figure 1, where
pedigree and phenotypic records are displayed in separate plates as a gen-
eralization of the case where animals might not have phenotypic records. In
addition, the dotted lines indicate a possibly missing parent in the pedigree.
In the pedigree plate we have K individuals represented by founders and
non-founders, where founders is a priori sampled from ak|σ2

a ∼
(
0, σ2

a

)
.

Non-founders individuals given the information of their parents are then
represented by ak = 1/2

(
af(k) + am(k)

)
+ wk, where af(k) and am(k) are

parent’s breeding value and wk represents the Mendelian sampling term
(wk|Wk,k ∼ N

(
0, σ2

aWk,k

)
).

θaαa

σ2
a

af(k) wk am(k)

ak

k = 1 : K

Wk,k

1/2 1/2

1

b0

˜
1

µi

αe θe

σ2
e

ei

yi

i = 1 : N

Zi,k

FIGURE 1. Directed acyclic graph of the animal model with nI individuals and
nY phenotypic records (yi) with explicit representation of Mendelian sampling
terms (wk) and error term (ei), where σ2

a is the additive genetic variance, af(k)

and am(k) are parent’s breeding value, 1 represents a vector of ones, µi the linear
predictor, and σ2

e the variance of the error term

In this sense, matrix A can be decomposed as A = TWT T using LDL
decomposition Golub and Van Loan (1996), as described in section 2.1. The
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diagonal elements of W can be computed according to specific scenarios
described by Mrode (2005) as i) Wk,k = 1

2 − 1
4

(
Ff(k) + Fm(k)

)
when both

parents are known; ii) Wk,k = 3
4 − 1

4Fm(k) or Wk,k = 3
4 − 1

4Ff(k) when
one parent are known; and iii) Wk,k = 1 when both parents are unknown,
where Ff(k) and Fm(k) are the coefficients of inbreeding related to the father
and mother identification of the individual k, respectively Kennedy et al.
(1988); Falconer and Mackay (1996); Mrode (2005).
Accounting for inbreeding when computing A−1 may impact the parti-
tioning results for genetic variance according to the inbreeding level be-

cause, for any domain D, we have V ar (ak|Wk,k) =

∫
D

a2k Pr (ak) dak −[∫
D

ak Pr (ak) dak

]2
= (1 + Fk)σ2

a, where Pr(.) represents a probability

density function, and Fk is the inbreeding coefficient of the kth individual.
Thus, we decided to include two more scenarios i) accounting and ii) not
accounting for inbreeding when constructing A−1. In the case of ignoring
inbreeding the Wk,k is equal to 1

2 , 3
4 and 1, respectively Mrode (2005).

We used the full Bayesian approach by specifying prior distribution for all
model parameters, as shown in Figure 1. Thus, b, σ2

a and σ2
e are assumed

to have a joint prior density of the form p
(
b, σ2

a, σ
2
e

)
= p (b) p

(
σ2
a

)
p
(
σ2
e

)
,

where p
(
τa = 1/σ2

a|αa, θa
)

∝ ταa−1
a exp (−θaτa), p

(
τe = 1/σ2

e |αe, θe
)

∝
ταe−1
e exp (−θeτe), and p (b) ∝ 1, with τa > 0, αa ≥ 0, θa ≥ 0, τe > 0,
αe ≥ 0 and θe ≥ 0. In this case, we are assuming a flat prior distribu-
tion for β which is independent of σ2

a and σ2
e . On the other hand, the

inverse-gamma(α, θ) is a natural candidate for the prior distributions for
variance components, and when α and θ are set to a value such as 0.13, it
can be considered as vague prior within the conditionally conjugate family
σ−2
a , σ−2

e ∼ Gamma
(
0.13, 0.13

)
. The posterior distribution can be obtained

by applying the form of Bayes’ theorem conditional on the data:

p
(
b,a, σ2

a, σ
2
e |y

)
∝p

(
y|b,a, σ2

e

)
p (b) p

(
a|A, σ2

a

)
×

p
(
σ2
a|αa, θa

)
p
(
σ2
e |αe, θe

)
.

We used Markov Chain Monte Carlo (MCMC) to generate samples from
the posterior distribution using Gibbs sampler algorithm Sorensen et al.
(2001). It was considered one chain with 80,000 samples, from which 20,000
iterations are burn-in while the remaining 60,000 were stored using a thin-
ning of length 40. Consequently, 1,500 samples of EBV’s are computed
observing the posterior distribution p

(
a|A, σ2

a

)
, which are passed as input

for the AlphaPart package. We assessed MCMC convergence by looking at
trace and autocorrelation function plots. Gibbs sampling was executed by
GIBBS1F90 software Misztal et al. (2018).
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3 Results and Discussion

The simulated cattle breeding programme illustrated the power of the parti-
tioning method to summarise genetic trends in mean and variance, although
some care is needed when using the proposed methodology. By partitioning
the genetic mean and variance we showed that in a high accuracy scenario
the covariance between females (F) and selected males (M) plays an impor-
tant role in the contribution to the genetic variance and, consequently, in
this case V ar (a) < V ar (a|F)+V ar (a|M). In this sense, we demonstrated
that the choice of groups is essential and that contributions are not nec-
essarily independent; hence, they should not be analyzed in isolation from
each other.
The advantage of combining the MCMC approach with the partition
method presented here is related to drawing samples from the posterior
distribution p

(
a|A, σ2

a

)
and using them to compute the point estimate

partitions for genetic mean and variance and also access their uncertainty.
Although the methodology presented here works fine for the extreme ex-
ample proposed using medium accuracy, we again expect the reproducible
inaccuracy showed in Figure 2 can be overcome with an extension of the
partition method using genomic models.
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FIGURE 2. Distribution of the difference between true and estimated partitions
for the total additive genetic variance (Sum) over generations by gender (male
(M) and female (F)) and status (selected males (S) and non-selected males (N))
considering 30 simulations replicate

4 Conclusion

We developed a method for quantifying sources of genetic variance. This is
a powerful and valuable method for understanding how different breeding
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groups interact within a breeding programme, and hence for optimising
breeding programmes. By partitioning the genetic variance in a simulated
cattle breeding programme, we showed that the covariance between paths
can make a substantial contributions to the genetic variance. Hence, to
comprehend and manage the genetic variance in a breeding programme,
we should not consider the contribution of different groups in isolation but
should perform a holistic analysis and partition of the observed genetic
variance instead.

Acknowledgments: The authors acknowledge support from the BBSRC,
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Abstract: The classification problems for the imbalance data occur frequently
in our lives, and it is important to solve them well. Therefore, we propose a
method combining the generalized extreme value (GEV) activation function and
the cost-sensitive learning method and over-sampling in a simple neural network
model. In order to check the performance of the proposed method, 65 data sets
were employed and 5 evaluation metrics were considered. Five models including
the proposed model were created and performance evaluation was performed.
Then the number of the best result and second best result for each evaluation
indicators in the entire datasets was counted and compared. As a result, generally
excellent results were obtained in five evaluation indicators when the proposed
method model was used.

Keywords: Activation function; Class imbalance; Over-sampling; Sigmoid
function; KEEL imbalance dataset.

1 Introduction

Nowadays, classification problem is a very important problem that occurs
very often. Traditional classification algorithms assume that the number of
samples between classes is approximately equal. But in reality, that is rarely
the case. Such a case in which a specific class appears more frequently than
other classes is said to be a class imbalance problem, and it exists in real
life such as medical diagnosis, fire detection and fraudulent transaction
detection. Recently, there are some trials using the GEV activation
function to solve class imbalance problem. Wang et al.(2010) used GEV
as the link function of generalized linear model(GLM), and Munkhdalai et

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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al. (2020) improved classification performance by using a neural network
model that has Gumbel distribution as an activation function. Recently,
Bridge et al. (2020) used GEV activation function in a convolution neural
network (CNN) model that diagnoses COVID-19.

2 Methods

When solving a classification problem using a multi-layer perceptron, we
often use sigmoid as activation function. The sigmoid function is calculated
as follows and has a symmetrical structure as shown in Figure 1 (right).

sigmoid(x) = 1/(1 + ex) (1)

Our proposed method is to use the cumulative distribution function (CDF)
of the GEV distribution as the activation function instead of the sigmoid
function, because it makes all real inputs to a value between 0 and 1. The
GEV distribution has three parameters and in this study, each parameters
were estimated using back propagation method with the weights of the
neural network model. The GEV activation function is calculated as follows,
and has an asymmetric structure as shown in Figure 1 (left).

G(x) := exp

{
−

[
1 + ξ

(
x− µ

σ

)]−1/ξ}
, (2)

where −∞ < (x− µ)/σ < ∞,−∞ < µ < ∞, σ > 0,−∞ < ξ < ∞.

FIGURE 1. The CDF of generalized extreme value (GEV) activation function
(left) and sigmoid activation function (right).

To compare the performance of the proposed method, we considered the
following 5 multi-layer perceptron (MLP) models for 100 KEEL imbalanced
data sets.

1. (MLP) sigmoid activation (baseline)

2. (MLP) GEV activation function
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3. (MLP) GEV activation and Thresholding

4. (MLP) GEV activation, Thresholding and Focal Loss

5. (MLP) GEV activation, Thresholding, Focal Loss and Over-Sampling

The data used in this experiment are shown in Table 1. The asymmetry
ratio was calculated by dividing the number of majority class samples by
the number of minority class samples (N), larger this value means the more
severe asymmetry.

TABLE 1. 5 out of 65 KEEL imbalance data sets (using data)

Data name N Input variable number Imbalance ratio

abalone19 4,174 8 129.44
abalone20 1,916 8 72.69
kr vs k zero vs fifteen 2,193 19 80.22
pocker 8 vs 6 1,477 9 85.88
pocker 8 9 vs 5 2,075 9 82.00

For a more reliable result, the average of the results obtained by changing
the seed (30 times) was compared, and for each data, 5 evaluation indicators
(follows) suitable for unbalanced data were evaluated. The neural network
model was used in the experiment, and the 5 evaluation indicators are
shown in follows. All of indicators, the higher the value, the better. For
the reliability of comparison, all hyper parameters such as batch size were
made the same.

F1-score = 2×(Recall×Precision)
Recall+Precision

Geometric-Mean (GM) =
√
TRP(Recall)× TNR(Specificity)

Balanced Accuracy (BA) = 1
2 × TPR+TNR

Area Under the ROC Curve (AUC)

Brier Inaccuaracy (BI) = 1
N

∑N
i=1

∑l
j=0(p̂(c = j, xi)− p(c = j, xi))2

3 Results

A summary of the experimental results is shown in Table 2. we counted
the number of better results when we compared method 1 and 5. As a
result, the results of the proposed method received higher scores in more
evaluation indicators than other models. However it’s never been nice if
the GEV activation function was used alone. In combination models, the
larger the model number, the better the results. So we can see that using
combination models performs better on imbalanced data.
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TABLE 2. Example of experiment result (data: abalone19)

Method F1-score GM AUC BC 2-BI
(1) 0.0 0.0 0.794 0.5 1.984
(2) 0.0 0.0 0.659 0.5 1.81
(3) 0.033 0.662 0.659 0.657 0.81
(4) 0.045 0.733 0.76 0.757 1.963
(5) 0.044 0.762 0.781 0.770 1.961

4 Summary and Discussion

We combined a GEV activation function with oversampling in a
cost-sensitive learning method and a simple neural network model to better
predict imbalanced data. Performance evaluation was considered through
5 evaluation indicators by creating 5 models including the proposed model.
As a result, generally excellent results were obtained when the proposed
method model was used. However the superiority of the model is shown
differently depending on the evaluation index, a comparison method that
considers the characteristics of the model and data is needed. Better results
can be expected if the two hyperparameters for Focal Loss are adjusted.
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FOUR (NO.5120200913674) funded by the Ministry of Education (MOE,
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Abstract: Scientists occasionally predict the future changes in climate us-
ing multi-model ensemble methods that combine predictions from individual
simulation models. We employed a model weighting method that accounts
for model performance and independence (PI-weighting). In calculating the
PI-weights, two shape parameters should be determined, but usual perfect model
test method requires a considerable computing time. To address this trouble, we
suggest simple ways for selecting two shape parameters based on the chi-square
statistic and the entropy, which reduce the computing time greatly. Our method
is applied to 21 CMIP6 (the Coupled Model Inter-Comparison Project Phase 6)
models for five climate variables over East Asia.

Keywords: Climate change; Dirichlet distribution; Generalized extreme value
distribution; Leave-one-out cross validation; Return period.

1 Introduction

Studies on the projection of future climate change have used ensembles of
multiple climate simulations. Model averaging or ensemble is a statistical
method in which unequal or equal weights are assigned to those models.
Despite some arguments, the equal weighting or “model democracy” has
been criticized because it does not take into account the performance, un-
certainty, and independency of each model in constructing an ensemble.

In addition to the performance, some researchers have considered other
criteria such as model independency (Knutti et al., 2017; Lorenz et al.,
2018). A weighting scheme that accounts for both the independence and
performance simultaneously is called the PI-weighting. In this study, we

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
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employ PI-weighting to robustly quantify uncertainty in MME. In apply-
ing the PI-weighting, we have to determine two shape parameters. One
way to select the shape parameters is a leave-one-out perfect model test
(Lorenz et al., 2018; Brunner et al., 2019), but it requires huge computing
time. To overcome this trouble, we suggest simple ways to determine these
parameters based on the entropy and p-values of the chi-square statistic.

2 Performance and independence weighting:
Determination of σS and σD

Weights are calculated for each model based on a combination of the dis-
tance Di (informing the performance) and the model similarity Sij (in-
forming the dependence) (Knutti et al., 2017):

wi =
exp(−Di

σD
)

1 +
∑M

j ̸=i exp(−
Sij

σS
)
, (1)

with the total number of model runs M and the shape parameters σD and
σS . The shape parameters are often determined through a perfect model
test (or a model-as-truth experiment) using the continuous rank probability
score (Lorenz et al., 2018; Brunner et al., 2019). This leave-one-out proce-
dure requires huge computing time. To address this computational trouble,
we consider relatively simple ways to determine the shape parameters.

To select an appropriate value of the shape parameter σS for the
I-weights, we consider an entropy-based approach. Denote Ii(σS) as a nor-
malized I-weight for model i and for the given σS . The entropy of the
I-weights as a measure of uncertainty (Ross, 2010) from these weights is
defined by the following:

E(σS) = −
M∑
i=1

Ii(σS) log Ii(σS) (2)

as a function of σS . When all Ii(σS)s are almost equal, the entropy has a
high value. We thus expect the entropy to increase because σS has a large
value. Figure 1 presents the entropy function of σS computed from the data
used for this study, which indicates that it is minimum at σS = 0.4. It is
interesting to note that the entropy function increases as σS decreases from
0.4 to zero. Thus, si moves toward one, and Ii is close to 1/M for all i.
Because we want to have a shape parameter σS that can differentiate the
I-weights most distinctly with minimum uncertainty, the value σS = 0.4
minimizing the entropy is chosen in this study.

To determine σD, a technique based on the p-value of the chi-
square statistic is considered in this study. Denote Pi(σD) as a normal-
ized P-weight for model i and for the given σD. For testing the hypothesis
frame, the null hypothesis is that all weigths are equal, and the alter-
native hypothesis is that some weights are not equal. For the given Pi,
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FIGURE 1. Plot of the entropy as the parameter σS changes from 0.1 to 1.0, and
the selected σS = 0.4.

the chi-square statistic used to test the above hypothesis is as follows:
χ2
0(σD) =

∑M
i=1 (

1
M − Pi(σD))2/ 1

M .
Because we do not want to accept equal weights, σD should be selected

to reject the null hypothesis. In addition, because we also do not want ag-
gressive weights, a σD can be selected as the maximum value of σD in which
we still reject H0 with α level. That is, our selection is σ∗

D = max {σD :
p− value (σD) < α}, where p− value (σD) = Pr[χ2 > χ2

0(σD)| H0].
The p-values are computed by a Monte-Carlo simulation in which

random numbers of weights are generated from the Dirichlet distribution.
Figure 2 depicts the chi-square statistic values computed from AMP1 with
some p-values as σD. We calculated the σD for each of the five climate
variables, and then calculated the average from those five σDs. When α =
0.05 as is usually applied in statistics, the averaged σ∗

D from five different
σD is 0.21.

FIGURE 2. Plot of the chi-square statistic values as the parameter σD changes,
for the annual maximum daily precipitation (AMP1). The selected σD is 0.17
(0.19) for p-value 0.05 (0.01).
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3 Results: model weights

The normalized PI-weights are obtained using Eq.(1), with σS = 0.4 and
σD = 0.21. Figure 3 demonstrates the distributions of the P-, I-, and PI-
weights. The variability of the I-weights is smaller than that of the P-
weights. The high P-weights of the CanESM5 and EC-Earth3-Veg models
decrease in PI-weights owing to the low I-weights. The PI-weights of BCC-
CSM2-MR, FGOALS-g3, and GFDL-ESM4 models increase owing to a
relatively high independency. The performance is more influential to the
PI-weights than the independency.

FIGURE 3. Spread of the weights for 21 CMIP6 (the Coupled Model Inter-Com-
parison Project Phase 6) models obtained based on the performance only, the
independence only, and by both the performance and independence. The weights
are obtained from five climate variables over East Asia.
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Abstract: When comparing one- and two-stage P-spline-based approaches for
analysing spatio-temporal hierarchical data from high-throughput phenotyping
experiments, a critical issue is to develop a good data simulation strategy. We
present a strategy that is independent from the statistical methods used to fit
the data. We find that for most simulated situations there was no clear difference
between the two approaches compared.
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1 Introduction

This work is motivated by the need for comparing two P-spline-based (Eil-
ers and Marx, 1996) approaches when analyzing spatio-temporal data from
high-throughput phenotyping (HTP) experiments, with a three-level nested
hierarchical structure (plants nested in genotypes, and genotypes nested in
populations). The focus is on analysing the evolution over time of the ge-
netic signal on a given phenotype. To simulate this data, we decompose
the spatio-temporal variation of the phenotype of interest in three com-
ponents (for simplicity, we consider one population): within genotypes and
plant variation, and spatio-temporal correlated noise. We then compare two
modelling strategies: the two-stage approach (TSapp) proposed by Pérez-
Valencia et al. (2022), in which they correct for experimental design factors
and spatial variation in the first stage, while estimating the evolution over
time of the genetic signal in the second stage; and the full and one-stage
spatio-temporal approach (OSapp, Pérez et al., 2021) that generalizes the

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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previous two-stage approach. When applying these approaches to real data
sets, two problems arise: (i) the phenotype of interest is not measured at the
population and genotype levels but only at the plant level; it makes evalu-
ating models’ performance at these levels difficult, and (ii) the approaches
seem to be sensitive to the dimension of the B-spline bases used at each
level of the hierarchy. This work presents a data generating mechanism and
a simulation experiment to study the above-mentioned problems.

2 Data simulation strategy

Let yi(t) denote the (simulated) phenotype of interest for the ith plant,
at time t ∈ {t1, . . . , tn}, at the spatial (row and column) position s =
(r(i), c(i)). We simulate HTP data assuming the following three-level nested
hierarchical structure

yi(t) = fp(i)(t) + fg(i)(t) + fi(t) + εi(s, t), p = 1, 1 ≤ g ≤ L, 1 ≤ i ≤ M,

with fp(i)(·) the population trajectory, and genotype-specific deviations,
plant-specific deviations and spatio-temporal correlated noise curves given
by fg(i)(·) ∼ N(0,Σgeno), fi(·) ∼ N(0,Σplant), and εi(·, ·) ∼ N(0,Σε),
respectively. Figure 1 depicts the kind of curves that are obtained at each
step of the simulation. The data is generated from the population to the
plant level, as follows:

Population trajectory Genotype deviations Plant deviations Spatio-temporal correlated noise

Genotype trajectories
Plant trajectories

Step 1 Step 2 Step 3 Step 4

Level of data 
resolution

Level of 
decision making

FIGURE 1. Data generating strategy.

Step 1. Generate one population trajectory from the growth logistic curve
model, fp(i)(t) =

a
1+exp (c(b−t)) , where a is the asymptote, b is the inflection

point, and c is the growth rate.
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Step 2. Generate L genotypic deviations, fg(i)(·) . For the covariance ma-
trix Σgeno, use an ARH(1) structure (Wolfinger, 1996) with d, a euclidean
distance matrix between time points (djk = |tk − tj |); σ2

geno, the between
genotypes variability; S(t) = σ2

genoh(t), a heterogeneous variance function,
with variance increasing as a quadratic function of time, h(t); and autocor-
relation parameter, ρ. Then, the ARH(1) covariance for two points j and
k separated by distance djk (in time) and autocorrelation ρ is

Σgenojk =
1

1− ρ2
Sjkρ

djk , S = (S(t)ST(t))

Step 3. Generate M plant deviations, fi(·). For the covariance matrix
Σplant, follow the same ideas used in Step 2. Use σ2

plant for the between

plants variability, and S(t) = σ2
planth(t).

Step 4. Generate M spatio-temporal correlated noise curves, εi(·, ·). Use
the space-time separable covariance model Σε = C(src)C(djk), which is
the product of a Matérn spatial covariance function (Guttorp and Gneit-
ing, 2006) and a temporal ARH(1) covariance function, and src is the dis-
tance between two plants locations, djk is the temporal lag between two
timepoints, S(t) = σ2h(t), and

C(src) =
1

2κ−1Γ(κ)

(src
ν

)κ

κκ

(src
ν

)
, C(djk) =

1

1− ρ2
Sjkρ

djk ,

where κκ(·), Γ(·), κ > 0, and ν > 0 are parameters of the Matérn func-
tion. Genotypes are assigned to spatial positions following a completely
randomised block design.

3 Performance assessment of spatio-temporal
hierarchical P-spline models

In brief, data is simulated under eight different scenarios: four levels for
the between genotype and plant variations (for two given variances σ2

1 and
σ2
2 , with σ2

1 < σ2
2 , the four possible combinations of σ2

geno and σ2
plant) and

two levels for the number of plants per genotype (mpg = 3, 10). For each
scenario, 100 datasets are generated. We then assessed the performance of
the two modelling strategies (OSapp and TSapp) and five different con-
figurations for the dimensions of the B-spline bases for the hierarchical
components (bp,bg,bi) while keeping fixed the B-spline bases for the spatio-
temporal components of the approaches. We focus here in the results at the
genotype level, which is the decision-making level in the agriculture context.
We use the logarithm of the root mean square error (log(RMSE)) as per-
formance measure to compare the simulated and the estimated genotype-
specific deviations. Figure 2 shows that small differences appear between
the two approaches, except when non-nested B-spline basis configuration
(13,9,7) is used for scenarios with 10 replicates per genotype.
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FIGURE 2. Comparison of the simulated and estimated genotype deviation
curves for eight scenarios (σ2

geno, σ
2
plant,mpg) of data simulation, using the two

modelling approaches (TSapp and OSapp), and five B-spline basis configurations
(bp,bg,bi) for functions at population, genotype and plant level, respectively.
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Abstract: In this approach we introduce a novel quantity which we call ‘pre-
dicted conversion rate’ (PCR) and give an application in medical statistics.

Keywords: HER2–positive breast cancer; Logistic regression.

1 Introduction

Fifteen to twenty percent of early breast cancer (BC) cases are HER2 (Hu-
man Epidermal Growth factor–Receptor 2) - positive which are associated
with a more aggressive clinical course (including a higher risk of recur-
rence) (Wuerstlein and Harbeck (2017), Gianni et al. (2012)). There are
several trials indicating that an adjuvant chemotherapy in combination
with trastuzumab and pertuzumab before surgery significantly improves
invasive disease-free survival in operable, HER2-positive BC with increased
risk of recurrence (positive lymph node (LN) stage or negative hormone re-
ceptors; see von Minckwitz et al. (2012) or Boland et al. (2017)). It seems to
be very likely that a neoadjuvant chemotherapy (NACT) results in ‘down-
staging’ the axillary lymph node (LN) stage. Unfortunately, at present, the
knowledge of LN stage prior to NACT is insufficient due to the not yet
established bioptic-histological diagnostics prior to the therapy, for illus-
tration see Fig. 1.
A question of fundamental medical interest, however, is: How many cases
could be converted from pN-stage ‘positive’ to ypN-stage (y stage)

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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biopsy 
 

neoadjuvant therapy 
 

surgery 
 

adjuvant therapy 
 

ypN-state pN-state  
missing !! 

FIGURE 1. Therapeutic process in case of NACT and pN diagnosis

‘negative’ applying the NACT?

2 Data

The dataset used in our approach includes 153 early HER2+ BC cases
from the Breast Health Center Vienna II (Vienna General Hospi-
tal) within 2012 – 2017 examined retrospectively. The data are stratified
by NACT/without NACT. Inclusion criteria are:

� primary early BC, HER2+

� diagnosis between 2012 and 2017

� surgery carried out

� medical care by the Breast Health Center Vienna II

� female

� age equal to or larger than 18

Beside NACT/without NACT, age at diagnosis, tumor morphology, tumor
grade, estrogen receptor, progesterone receptor, Ki67 of the pretherapeu-
tic biopsy and (y)pN stage (pN0-pN3) were reported, where (y)pN-stage
denotes: pN-stage in case of no NACT (no treatment in between, prior to
the therapy) and ypN-stage in case of NACT (after treatment/therapy).
As a result of the descriptive analysis we notice a substantially smaller
(y)pN1-share in the NACT group.
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3 Model

In a first step, we build a logistic regression model

(y)pN01 = NACT+ other meaningful predictors

in order to estimate the number of pN1 cases without NACT, where
(y)pN01 denotes the dichotomous variable {(y)pN equal to zero, (y)pN≥ 1}
and NACT the variable indicating NACT/without NACT. We, however,
found only 1 additional predictor of significant relevance: The progesterone
receptor status PR-negative(PR0) versus PR-positive(PR1) .
As mentioned above, we do not have any information about the pN stage
before the treatment in the NACT group. To overcome this lack of infor-
mation we are using the estimated probabilities in the no therapy group in
order to predict the pN1 cases in the NACT group (=predicted number of
cases in the NACT group if there would have been no therapy). As a result
of this we are able to calculate the ‘predicted number of conversions’ as the
difference of

� Predicted number of cases using the probabilities of the no therapy
group (estpN1), and the

� Observed number of cases in the therapy group (ypN1).

Further on, we define the ‘predicted conversion rate’ (PCR), PCR ≤ 1,
according to:

PCR =
Predicted number of conversions

Predicted number of cases accord. to the no therapy group

( = 1− Observed number of cases in the therapy group

Predicted number of cases accord. to the no th. group
)

where

� PCR > 0 implies that there is a positive number of conversions,

� PCR = 0 implies that there are no conversions and

� (PCR < 0 implies an opposite effect)

3.1 Bootstrap and CI

In a further step, we are going to investigate the statistical confidence of
the PCR-value. For this purpose we are employing a bootstrap approach
resampling the cases of our data set, see Davison and Hinkley (1997) or
Efron and Tibshirani (1993). Looking at the empirical distribution of the
PCR-value we are calculating the α-percentiles. In order to get an unbiased
estimate of the percentiles we are going to employ the BCα-method as
described in Efron and Tibshirani (1993).
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TABLE 1. Probabilities and predicted number of pN1 cases and observed number
of ypN1 cases

prob. cases pred. # of pN1 cases obs. # of ypN1 cases

PR0 0.351 52 18.25 8
PR1 0.537 37 19.86 7

total 89 38.11 15

4 Results

Using the data as described above we calculate the probabilities in case
of PR0 and PR1 applying the logistic regression model which results in
calculating the predicted number of pN1 cases in the 3rd column – see
Table 1. Further on, we are able to calculate the predicted conversion rate
as (see ‘total’ values of the last row):

PCR = 1− 15

38.11
= 0.6064

Thus, the result for the predicted conversion rate (PCR) can be described
in our case as follows: If we apply the NACT, about 60 percent of the
pN1 cases are forecasted to be converted to pN0 cases! Applying bootstrap
techniques we calculate a 95 % CI (corrected) according to: (0.317,0.779).
Noticing that zero (which means ‘no conversion’) is outside of the CI implies
that the PCR-result turns out to be significantly different to zero.

5 Discussion

As we look at the therapy of HER2-positive BC cases over time a prelimi-
nary chemotherapy seems to be meaningful. In this paper we were investi-
gating the conversion of pN stage (pN1→pN0) which is assumed to be a re-
sult of a preliminary chemotherapy. Using a data set of 153 NACT/without
NACT cases we are estimating a ‘predicted conversion rate’ (PCR) of about
60 percent.
Finally, we conclude that the PCR is an useful novel quantity for our special
case with possible applications for other similar approaches.
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1 Introduction

At present, designing future rainfall forecasts is essential due to heavy
rainfall causes economic, social, and environmental damage. Due to climate
variations, rainfall patterns have changed, causing flooding problems in
every region and becoming a natural disaster problem that has been
occurring in Thailand. Since the changing times, the behavior of rainwater
varies due to factors such as impact of climate change from global warming.
Therefore, the analysis of NS rainfall patterns in time series has been
studied in several pieces of research (Lee and Ouarda, 2010; Cannon, 2010).
Ignoring the uncertainty of a single hydrological model affects the reliability
of future forecast values. The ESB model provides a consistent mechanism
for model uncertainty. Multi-model ESB method has been proven not only

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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to improve upon the bias and variance compared to the single model
but also to solve the overfitting problem. Davison (2003) showed that
the mean square error of the weighted combination model was less than
that of the single model. In this study, we present the application of two
statistical models: the NS and ESB models, with AMP data for 79 stations
in Thailand to forecast the future rainfall.

2 Methodology

2.1 Time-dependent GEV Distribution

In this research, we use the GEV distribution (GEVD) for analyzing AMP
data. The cumulative distribution function of the GEVD is Coles (2001):

Model GEV 00 : F (x) = exp

{
−

[
1 + ξ

(
x− µ(t)

σ(t)

)]−1/ξ}
, (1)

where 1 + ξ(x − µ(t)/σ(t)) > 0 and µ(t), σ(t) > 0 and ξ are the location,
scale and shape parameters, respectively.

The NS models are presented in Table 1. It consists of 16 models totally;
8 of GEVD and 8 of GD. We denote Mij to represent the functional form
of time. t0 denotes the year that the data records start. The maximum
likelihood estimation method is used to estimate parameters (Coles, 2001).
We select the suitable model using smallest the AIC and AICC (for n < 40).

TABLE 1. Functional forms of parameters for time dependent NS GEV models.

Models µ(t), σ(t)

M00: µ(t) = µ0

M10: µ(t) = µ0 + µ1 × (t− t0 + 1)
M20: µ(t) = µ0 + µ1 × (t− t0 + 1) + µ2 × (t− t0 + 1)2

M30: µ(t) = µ0 + µ1 × exp(−µ2 × (t− t0 + 1))
M01: µ(t) = µ0

σ(t) = exp(σ0 + σ1 × (t− t0 + 1))
M11: µ(t) = µ0 + µ1 × (t− t0 + 1)

σ(t) = exp(σ0 + σ1 × (t− t0 + 1))
M21: µ(t) = µ0 + µ1 × (t− t0 + 1) + µ2 × (t− t0 + 1)2

σ(t) = exp(σ0 + σ1 × (t− t0 + 1))
M31: µ(t) = µ0 + µ1 × exp(−µ2 × (t− t0 + 1))

σ(t) = exp(σ0 + σ1 × (t− t0 + 1))

After the best models are determined, next step is to derive the return
level (zq) which is the level exceeded on average only once in every T years
as follows (Coles, 2001):

zq(t) = µ(t)− (σ(t)/ξ)
{
1−

[
− log

(
1− 1/T

)]−ξ}
, for ξ ̸= 0; (2)

where T = 1/p. The variances of return levels (ẑT ) is approximated from
delta method (Obeysekera and Salas, 2014).
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2.2 Ensemble model

The ESB here is a weighted average of all NS models (m = 1, · · · , 16) from
Table 1. The return level, z∗q (t), define as:

ẑ∗q (t) =
M∑

m=1

wmẑq,m(t) (3)

The variance of return level, V ar(z∗q (t)), define as:

V ar(ẑ∗q (t)) =

{
M∑

m=1

wm

√
V ar(ẑq,m(t)|bm) + b2m

}2

(4)

This variance may be estimated by substituting b̂m = ẑq,m(t) − ẑ∗q,m(t)

and ˆV ar(ẑq,m(t)|bm). The estimates ẑq(t) and ˆV ar(ẑq,m(t)|bm) are found
by inference methods from section 2.1, assuming that model m is the true
model, and ẑ∗q (t) is given by equation 3 (Buckland et al., 1997). The wieghts
in this study are calculated based on Akaike weights (Buckland et al., 1997,
Davison, 2003);

wm =
exp

(
−AICm/2

)
∑M

m=1 exp
(
−AICm/2

) (5)

where
∑

wm = 1. We use AICC instead of AIC values to calculate weights
for small observations.

3 Results and Conclusions

The results of study were found as follows. In 79 stations, 27 NS GEV
models were selected based on AIC value for AMP data. In the southeast
region such as Nakon Si Tammarat and in the eastern region such as Trad
are increasing with very heavy future rainfall (see Figure 1). We found that
the ESB model shows lower variance in return level estimation than the
best model. (see Figure 2).
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FIGURE 1. Maps of 50-year return levels of 2000 (past) and 2035 (future)
(unit: mm) estimated for the AMP data in Thailand.

FIGURE 2. Comparison of 2-, 20-, and 50-year return levels (left) and variance
of 20- and 50-year return level (right) between NS (dashed line) and ESB (solid
line) models of Chiang Mai station. Black, red, and blue represent 2-, 20-, and
50-year, respectively.
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Abstract: To project the future changes of extreme precipitation in the Philip-
pines, we investigated the observations based on 53 stations and 24 CMIP6 (Cou-
pled Model Inter-Comparison Project Phase 6) models. We applied generalized
extreme value (GEV) distribution and multivariate bias-correction to series of an-
nual maximum daily precipitation (AMP1) data acquired from the observations
and models under three shared socioeconomic pathway (SSP) scenarios (SSP2-
4.5, SSP3-7.0, and SSP5-8.5). We employed an ensemble method that takes both
independence and performance of model into account, which is named as the
PI-weighting. From this study, we predict that the relative increases of 20-year
return value of the AMP1 from the past to the year 2100 be about 8.5% in the
SSP2-4.5, 11.6% in the SSP3-7.0, and 17% in the SSP5-8.5 scenarios, respectively,
in the spatial median over the Philippines.

Keywords: Climate change; L-moments estimation; Relative change; Shape pa-
rameters.

1 Introduction

The Philippines is at high risk by the impacts of climate change, including
increased frequency of extreme weather events, rising temperature, sea level
rise, and extreme rainfall. This is because of its high exposure to natural
risks (tropical cyclones, floods, landslides, droughts), reliance on climate-
sensitive natural resources, and huge coastlines where most major cities
and majority of the population resides. Heavy rainfall in the Philippines are
usually due to monsoon surge (intensification of the monsoons) and slow-
moving tropical cyclon in the area. The above typhoons brought extreme

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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rainfall and caused floods and landslides. Downpour events (with 350 mm
or higher) have been more recurrent in the latter part of the 20th century
(Villafuerte et al., 2015). In this study, we update the previous studies
based on 24 CMIP6 models under the three shared socioeconomic pathway
(SSP) scenarios: namely SSP2-4.5, SSP3-7.0, and SSP5-8.5. We predict the
amount of changes in the largest precipitation

2 Data and method

We used the 24 CMIP6 climate models in this study. The considered scenar-
ios are shared socioeconomic pathways SSP2-4.5, SSP3-7.0, and SSP5-8.5.
Two periods are considered for the future, namely, period 1 (2021–2060)
and period 2 (2061–2100). The observations for 40-year (1975–2014) refer-
ence period were obtained from the Philippines Atmospheric, Geophysical
and Astronomical Services Administration (PAGASA) (PAGASA, 2011).
When our interest is in analyzing extreme events, the generalized extreme

value (GEV) distribution is typically employed. The changes in extremes
is usually described in terms of the changes in extreme quantile, which
is called as the return level associated with the return period 1/p (Coles,
2001). The parameters in GEV distribution are estimated by the L-moment
method (Hosking and Wallis, 1997).

In this study, we choose the multivariate bias correction (MBC) method
by Cannon (Cannon, 2018) among some available BC techniques. The MBC
is a multivariate extension of quantile delta mapping (QDM). QDM has an
advantage of preserving the approximate trends of the model data.

A weighting method that accounts for both the independence and per-
formance simultaneously is called the PI-weighting (Knutti et al., 2017).
Weights are computed for each model based on a combination of the dis-
tance Di (apprising the performance) and the model similarity Sij (appris-
ing the dependence):

wi = exp(−Di

σD
)/(1 +

M∑
j ̸=i

exp(−Sij

σS
)), (1)

with the total number of models M and the shape parameters σD and σS .
We follow a relatively simple method proposed by Shin et al. (2021) to
determine the shape parameters σD and σS . They used Shannon’s entropy
and the Chi-square statistics.

3 Results

The normalized PI-weights are obtained using Equation (1) with σS = 0.4
and σD = 0.86. Figure 1 displays boxplots of the 20-year (50-year) return

550



Prahadchai and Park

values of the AMP1 in Philippines. The increasing trends from the past to
the future are evident in every scenario.

Figure 2 displays boxplots for the 20-year and 50-year return periods,
as compared to the reference years (1975–2014) for the two future periods
under the three scenarios. We find out that a 1-in-20 year (1-in-50 year)
AMP1 in Philippines will likely become 1-in-17 (1-in-37) year, 1-in-17 (1-
in-33) year, and 1-in-14 (1-in-31) year events in the median by 2100 based
on the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively.

FIGURE 1. Boxplots of 20-year return values (in mm) of the AMP1 in Philip-
pines for the future time: P1 (2021-2060), P2 (2061-2100), under three scenarios.
HIST(NBC) and OBS indicate the historical data without a bias correction and
the observations.

FIGURE 2. Parallel coordinated boxplots over the Philippines, similar to those
in Figure 1, but for 20-year and 50-year return periods compared to the past
from 1975 to 2014.

4 Summary

We estimated the future changes in precipitation extremes within Philip-
pines using observations, 24 multiple CMIP6 models, generalized extreme
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value distribution, the multivariate bias correction technique, and the
model weighting method (PI-weighting), which account for both the per-
formance and independence of the models.

From 20-year and 50-year return values of the annual maximum daily
precipitation (AMP1) averaged over 64 grids in Philippines for two future
time under three SSP scenarios, the increasing trends from P1 (2021-2060)
to P2 (2061-2100) are evident in SSP3-7.0 and SSP5-8.5 scenarios. We
foretell that the relative rises of 20-year return value of the AMP1 from
the past to the year 2100 will be about 8.5% in the SSP2-4.5, 11.6% in the
SSP3-7.0, and 17% in the SSP5-8.5 scenarios, respectively, in the spatial
median.

We also found out that a 1-in-20 year (1-in-50 year) AMP1 within
Philippines will likely become a 1-in-16 (1-in-37) year, a 1-in-17 (1-in-32)
year, and a 1-in-14 (1-in-31) year event in terms of the median by the year
2100 under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively,
as compared to the observed data from 1975 through 2014.
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Abstract: The terms distributional regression and Generalized Additive Model
for Location, Scale and Shape both indicate a class of broad statistical models
which allow for the modeling of a given response variable as a flexible function of
some predictors. These models extend traditional regression models by allowing
the response variable to follow any distribution indexed by one or more param-
eters. These parameters are then allowed to vary as unknown functions of the
predictors: these functions are typically estimated using basis expansions. The
analysis of extremes has proven to be an interesting area of application for distri-
butional regression: there is for example an interest in assessing whether climate
and other anthropogenic changes are having an impact on the measured records
of some environmental extremes. These type of data is typically assumed to fol-
low some highly skewed distribution which does not belong to the exponential
family. Furthermore, there is little prior knowledge on the type of shape that the
impacts of climate change could have on extremes: it is therefore preferable to
allow for the relationship to be derived from observations. In this work, I pro-
vide a brief overview of distributional regression, extreme value statistic and of
some off-the-shelf implementations available in the R statistical software for the
estimation of distributional regression models for extremes.

Keywords: GAMLSS; Distributional Regression; Extremes; Statistical Software.

1 Generalized Additive Models and their extensions

Generalized Additive Models (GAMs, Wood, 2017) are a powerful statisti-
cal modeling tool which extends Generalized Linear Models by relaxing the
assumption that the relationship between the (link-transformed) expected
value of the response variable and the predictors can be expressed as a para-
metric function. Like in classical regression models, the focus of GAMs is
to model the expected value of a variable of interest, typically assuming

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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that the response variable follows a certain distribution parametrized by a
set a parameters. Rigby and Stasinopoulos (2005) proposed an extension
to the traditional GAM framework, by allowing any of the parameters of
the distribution (or their transformation by means of a link function) to
vary as a flexible function of the predictors. These type of extensions can
for example be used to model heteroschedasticity in linear regression or
varying overdispersion for count data modeled using a Negative Binomial.
This is achieved by allowing the parameters other than the location to vary
as function of the predictors. In particular the parameters which are related
to the scale and shape of the distributions might be modeled as functions of
the covariates: this gives origin to the name Generalized Additive Models
for Location, Scale and Shape (GAMLSS). The overall GAMLSS specifica-
tion is therefore given as follow. Assume we have a sample of n independent
observations from p explanatory variables (X1, . . . , Xp) and one variable of
interest Y : for the ith element of the sample we have a vector of observations
(x1i, . . . , xpi, yi). Conditional on the covariates vector xi = (x1i, . . . , xpi),
the observations yi are assumed to be independent realizations of a ran-
dom variable Yi which follows a distribution D indexed by K parameters:
(Yi|Xi = xi) ∼ D(θ1i, . . . , θKi). Each distribution parameter is assumed to
be related to a linear predictor ηθki = g(θKi) which is taken to be of the
form:

ηθki = g(θki) = βθk
0 + fθk

1 (x1i) + . . .+ fθk
p (xpi) (1)

where the fθk
j (xji) components might represent parametric or unknown

functions of the covariates. In the latter case, as in GAMs, a common ap-
proach to estimate such unknown functions is to approximate them by
a basis function approximation: fθK

J (xJi) =
∑B

b=1 β
θK
Jb B

θK
Jb (xJi), where

BθK
Jb (xJi) is a basis function, βθK

Jb is the corresponding coefficient which
needs to be estimated and B is the basis size. To avoid the need to choose
the basis size, a common strategy is to use very rich bases and to use a
penalized likelihood approach to avoid overfitting in the model estimation.
The penalization can be derived as a constraints on the differences between
consecutive βθK

Jb or as a gaussian prior on the vector of the (βθk
J1, . . . , β

θk
JB)

parameters. As a consequence, one can derive an estimate for the func-
tions in equation (1) either by maximizing the penalized likelihood or by
employing a Bayesian approach (see, among others, Umlauf et al. 2018).
Although only univariate simple fj(·) terms are included in equation (1)
more complex predictor components can be included in the linear predic-
tors, including multivariate smooth terms (eg fij(xi, xj)), (spatial) random
effects or varying coefficient terms. Since it is sometimes the case that a
distribution’s parameter does not have a direct relationship with the lo-
cation, scale or shape of the distribution GAMLSS-type models are also
referred to as distributional regression models, to emphasize that what is
modeled is the response variable’s distribution by allowing its parameters
to vary. A further extension of the GAMLSS framework is provided by

554



Prosdocimi

Vector Generalized Additive Models (VGAM, Yee 2015): which also allow
for a multivariate response variable.

2 Statistical models for extremes

Extreme Value Statistic (Coles, 2001) aims at quantifying the atypical be-
havior of a process rather than the typical, average one which is the focus
of traditional statistical inference. As such, extreme value inference is based
on samples which can be deemed to be in some way representative of the
atypical, extreme behavior of a process of interest. Two main types of sam-
ple are employed for inference on extreme values: block maxima and peaks
over threshold. Block maxima are derived as the largest values in a fixed
block of recording time, for example a year: yearly maxima of peak flow
at a river gauge station are a classical example of such type of records.
Block maxima are conceptually easy, but their use involve a great loss
of information: an alternative definition of extremes is provided by peaks
over threshold in which all values larger than a certain high threshold u
are considered to be extreme. This implies, for example, that there could
be several large events in the same year, while for some years no extreme
events might be recorded, thus ensuring that all large events contribute to
the the characterization of the extremes of a process. The challenge in the
definition of the peaks over threshold records is to specify the threshold
u above which records can be deemed to be extremes, although several
methods have been proposed (Scarrot and MacDonald, 2012). One notable
approach to select u is to specify its value as the value of a certain upper
quantile of the entire sample: this can be generalized to a varying threshold
approach by means of quantile regression, which can also be described as
a distributional regression model in which it is assumed that the response
variable follows an asymmetric Laplace distribution (ALD, see Youngman,
2020).
Using asymptotic arguments, different distributions are derived as the lim-
iting distribution for either block maxima or peaks over threshold (Coles,
2001): these are respectively the Generalized Extreme Values (GEV) and
the Generalized Pareto distribution (GP). The probability distribution
functions (pdf) of the GEV is given as:

f(y;µ, σ, ξ) =
1

σ

{(
1 + ξ

y − µ

σ

) ξ−1
ξ

}
exp

{
−
(
1 + ξ

y − µ

σ

)− 1
ξ

}
for y : 1 + ξ(y − µ)/σ > 0. For the peaks over threshold, one typically mod-
els the value of the threshold exceedance conditional on the threshold being
exceeded: Z = (Y − u)|Y > u, so that Z > 0. Z is then assumed to follow
a GP distribution with the following pdf:

f(z;σ, ξ) =
1

σ
exp

{(
1 + ξ

z

σ

)− ξ+1
ξ

}
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and z < −σ/ξ, if ξ < 0. Notice that the domain over which the GEV and
the GP distribution are defined depends on their parameters: in particular
the sign of the shape parameter ξ determines whether the distribution has a
lower or upper bound. There is an asymptotic correspondence between the
two definitions of extremes: the Point Process (PP) representation of peaks
over threshold provides a clear link between the GEV and the GP (see Coles
2001). Furthermore, when the shape parameter is null, both distributions
reduce to simpler two-parameter distributions, respectively the Gumbel
and Exponential distribution Although the GEV and GP distribution are
derived as the limiting distribution of extremes, other distributions are
employed for the analysis of extremes in several applications, either because
they historically have been found to provide a good fit to the data or
because they provide a simpler analytical framework. Popular alternative
distributions are for example the Gamma, log-normal, Generalized Logistic,
log-Pearson type III or Kappa distribution (Hosking and Wallis, 1997).

3 Flexible distributional models for extremes:
statistical software implementation

It can be of interest to asses if some external variable influence the ex-
tremes of a process. A common approach to asses this type of question is
to allow one or more of the parameters of the extreme value distribution
to change as a function of some covariate, thus developing a distributional
regression approach for extremes. In particular (see for example Villarini
et al. 2010), it can be of interest to use flexible functions of the predictors
like in equation (1). A working and reliable software which allows for the
estimation of distributional regression is essential for the widespread usage
of flexible modeling techniques in the applied sciences. Nevertheless, since
extreme value distributions do not belong to the exponential family of dis-
tribution and their estimation can be challenging due to the fact that the
distributions’ domain depend on the distributions’ parameters, many gen-
eral purpose packages for GAMLSS-type estimation did not directly allow
for the estimation of extreme value families. This has changed in the most
recent years, with novel state-of-the-art routines for the estimation of distri-
butional regression for extremes being made available as packages for the R
Statistical computing language. Several of these packages also have ways for
the user to add new distributions for which distributional regression models
can be specified, thus increasing the possibility of applied scientists to use
distributions which are relevant for their specific use case. A list of packages
which have built-in functions for the estimation of distributional regression
models for extremes is provided below, together with some indication of
the estimation approaches, the distributions implemented in the package
which are relevant for extreme value analysis and some further comments
on whether functions specifically relevant for the analysis of extremes are
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present. All packages are available on CRAN (https://cran.r-project.org/),
the centralized repository for R software extensions.

� The mgcv (Wood, 2017) package implements (among others) the
GEV, Gumbel and Gamma distributions. It is a CRAN recommended
package. Adding novel distributions is possible but not straightfor-
ward. Various estimation approaches are implemented, although the
default approach is mostly frequentist.

� The gamlss (Rigby and Stasinopoulos, 2005) package implements
(among others) the Reverse GEV, Reverse Gumbel, Gamma and
log-normal distributions: notice that the parametrization of extreme
value distributions is somewhat different from the one in Coles (2001)
typically used in the extreme value literature. Adding novel distribu-
tions is possible and not too complicated. The estimation approach
is mostly frequentist.

� The VGAM (Yee, 2015) package implements (among others) the GEV,
Frechet, GP, Gumbel and Gamma distribution. Adding novel distri-
butions is possible but not straightforward. The estimation approach
is mostly frequentist. Some extreme value dedicated functions.

� The evgam (Youngman, 2020) package implements (among others)
the ALD, GEV, GP and a PP representation of peaks over thresh-
old. Adding novel distributions is possible but not straightforward.
The estimation approach is mostly frequentist. Several extreme value
dedicated functions.

� The bamlss (Umlauf et al., 2018) package implements all families
used in the gamlss package and, among others, the ALD, GEV, GP
and Gumbel distribution. The main estimation approach is Bayesian,
since the package aims to implement Bayesian approaches for the
estimation of GAMLSS-type models. Adding novel distributions is
possible and not too complicated.

� The brms package implements (among others) the ALD, GEV,
Frechet, Gamma and log-normal distribution. brms is a general pur-
pose package for the Bayesian estimation of regression models, which
also allows for the estimation of flexible regression models. Adding
novel distributions is possible and not too complicated (with abun-
dant documentation in the package’s vignette).
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Abstract: In many fields of knowledge experiments are performed in order to
get an insight of the models describing the objects of study. The choice of the
optimal experimental conditions where runs are to be taken is essential in or-
der to get the maximum information about these models. The literature offers
a great number of works based on independent observations, and thus very of-
ten the researcher agrees with this assumption in order to be able to use the
huge toolbox of results, algorithms and procedures already known for indepen-
dent observations. However, different situations can make the researchers drop
this independence assumption. Some examples are: repeated observations over
the same subject at different temporal points, observing different responses on
the same subject (multiresponse models) and/or observing several subjects that
could share or not similar covariance structures. Quite often, the actual situation
is a combination of the previous ones. In all of these cases it would be interesting
to know the design that produces the best estimates of the model parameters,
or minimizes the variance of the predicted response, or optimizes another char-
acteristic of the model (according with a specific optimality criteria), that is the
optimal designs for each model. In this work, most of the situations described
above will be addressed, trying to find analytically the optimal sample plans for
them using optimal experimental design techniques, and applying the results to
convenient examples.
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1 Optimal Design of Experiments

The one-response linear model will be denoted as y = f(x)Tβ + u, where
β is the parameter vector of size m, u is the error term, and f(x) =
(f1(x), . . . , fm(x))T , with the fi(x) linearly independent in the experimen-
tal domain X . An exact design ξ is a collection of points {x1, . . . , xn} of the
independent variable, which represents the experimental conditions, with
xi in X . In matrix notation it can be expressed as

Y = Xβ + u ,

where Y = {y1, . . . , yn}T is the observations vector, U = {u1, . . . , un}T the
error terms, and X = (f(x1), . . . , f(xn))

T the design matrix. For normally

distributed random errors β̂ = (XTΣ−1X)−1XTΣ−1Y, with Σ = V ar(Y)

and V ar(β̂) = (XTΣ−1X)−1 . The information matrix of ξ will be

M(ξ) = XTΣ−1X .

The standard method to obtain optimal designs requires to know the ana-
lytical expression of the model and to compute the derivatives with respect
to the parameters in order to work with the linearized model. When no
analytical expression of the model can be obtained, some methods for com-
puting these derivatives can be employed, as described in Rodŕıguez-Dı́az
and Sánchez-León (2014).
When dealing with correlated observations the size of the design, n, should
be fixed in advance. In many experiments it has no sense to take more
than one observation to the same experimental unit at the same design
point x, especially when the design variable is time, thus in the following
it will be assumed that xi ̸= xj for all i, j. Usually, the aim is to find
the points {x1, x2, ...} where to take observations in order to get the best
estimates of the parameters of the model, that is, the estimation with min-
imum variance, providing an optimal design for the model. The inverse of
the information matrix is proportional to the covariance matrix (the gen-
eralized variance) of the parameter estimators) of the model; therefore the
aim is usually to minimize (a convex function of) M−1(ξ). However, there
is not an only way of minimizing a matrix, giving rise to different criterion
functions. A particular criterion function should be chosen depending on
the objectives of the practitioners, for instance getting the best estimators
of the parameters (one, some of them or all of them), or minimizing the
variance of the predicted response. The most used criterion is D-optimality,
which focuses on the determinant of the information matrix. A design ξ is
D-optimal if maximizes this determinant, what is equivalent to minimize
that of the covariance matrix. A-optimality pays attention to the trace of
the covariance matrix, thus an A-optimal design minimizes the average of
the variances of the estimators of model parameters. When the informa-
tion matrix depends on unknown parameters, nominal values are needed
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for them and thus the obtained designs will be locally optimal, that is, they
are good for (or close) those nominal values used in the computation. Fe-
dorov and Hackel (1992), Pukelsheim (1986) or Atkinson et al. (2007) are
classic references on optimal design of experiments.

2 Multiresponse and multisubject models

In many studies, different kind of responses (say k of them) are measured,
getting into the field ofmultiresponse models. These models have been stud-
ied from the point of view of optimality from different perspectives, but to
date most of the literature about multiresponse models consider correlation
among different variables observed on the same ’subject’, whereas in every
of the studies the measures taken at different points, y(x) and y(x′), are
assumed independent. This assumption could be sensible when the variable
refers to individuals in a study, but not so much in other cases. In particu-
lar, when the interest is to analyze the evolution of a set of characteristics
(variables) observed in a specific experimental unit at a different time mo-
ments. It seems clear that, apart from a static (in the same temporal point)
or intra covariance structure among different type of observations taken at
the same time, a longitudinal (along a period of time) or inter correlation
among the same type of measures obtained at different times should be
taken into account (Rodŕıguez-Dı́az and Sánchez-León, 2019a, 2019b).
Let S(x) denote the variance of the sample y(x), that is
S(x) = cov[y1(x), . . . , yk(x)] = (σij)i,j=1,...,k. It is usual to assume
that the relation among the different variables is similar for every x,
thus in the following a constant covariance S will be considered (intra
correlation). For other hand, the covariance between the same type of
observations taken at different points will be assumed to be dependent
only on the distance between points, thus the longitudinal covariance will
be the same for the k different responses, R = cov[yi(x1), . . . , yi(xn)]

T

∀i. The points for measurements are supposed to be different, that is, a
minimum distance δ > 0 between samples is assumed, avoiding singular
covariance matrices (longitudinal covariance).
To date, the double covariance structure has been considered only for stud-
ies carried out over one experimental unit, for which several variables were
measured at different times (Rodŕıguez-Dı́az and Sánchez-León, 2019a,
2019b). Now N subjects are supposed to be observed at different tem-
poral points t1, . . . , tn, which will be the design ξ. The design points ti can
denote any convenient temporal unit. It will be assumed that for each ti in
ξ the values of several characteristics Y1, . . . , Yk will be obtained for all of
the subjects, and the aim will be to choose the ’best’ design, the one giving
the greatest information about the models describing the evolution of the
response variables.
Different situations can be considered: the first one when the subjects have
similar characteristics (e.g. students within the same classroom) and thus
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the same covariance structure can be assumed for every subject; and an-
other one when the previous assumption is no longer valid (e.g. different
type of bacteria) with different covariance structures and thus more com-
plex to deal with. In addition, the response variables may have the same
model for every subject (or may not), and various evolution model can be
considered for the response variables. Furthermore, when there are differ-
ent types of subjects multiple subjects of each type could be observed, in
this case usually assuming independence between subjects. Combining all
of these factors, several analytical results have been obtained, and various
examples of application are shown.
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Abstract: Zero-inflated interval regression models handle the excess of zeros in
an ordinal response by combining a probit model with an ordered probit model.
In case of violation of the usual distributional assumptions, standard maximum
likelihood estimation is biased and inefficient. We propose a robust inferential ap-
proach based on exponential tilting, which weighs each observation according to
its compatibility with the assumed model. This methodology is motivated by the
analysis of UK survey data on cyber attacks. Our robust results clearly outper-
form classical inference and reveal the importance of cyber defence investments
in reducing the costs from cyber security breaches.
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Ordinal response variable.

1 Introduction

Cyber attacks are malignant assaults launched against single computers or
a computer network in order to access an asset, like data, patents, or prod-
uct specifics. Due to their increasing occurrence, the study of the economic
impact of cyber security breaches has gained relevance in recent years. Here
we focus on data from two waves of the UK Cyber Security Breaches Sur-
vey (CSBS). The response variable of interest is the cost associated with
recent cyber breaches, and takes interval values. The first interval class con-
taining the zero is observed with especially high frequency. Such features
suggest to analyse the data via the zero-inflated interval regression (ZIIR)
model (Brown et al., 2015). As in this case some key distributional as-
sumptions are violated, the maximum likelihood (ML) estimator is known
to be biased, so we develop a robust approach within the exponential tilting
framework (Choi et al., 2000). This strategy allows to get reliable insights
on the impact of investments in cyber defence on costs from cyber attacks.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Zero-inflated interval regression

Let Y ∗ be the unobservable actual monetary loss sustained by a firm due to
cyber attacks. For each ith firm, we observe only the K ordered categories

Yi = l ∈ {0, 1, . . . ,K} if γl < Y ∗
i ≤ γl+1 (i = 1, . . . , n) ,

where γ = (−∞, γ1, . . . , γK ,+∞)T is a (K + 2)-vector of given thresholds.
The ZIIR assumes for Y ∗ a two-stage selection model. In the first stage,
the binary variable S indicates whether any loss occurs; for the ith firm,
Y ∗
i = 0 if Si = 0, and Y ∗

i > 0 if Si = 1. We consider the probit model

P (Si = 1;β(1)) = Φ(xT

i β
(1)) (i = 1, . . . , n) , (1)

where β(1) is a p-vector of parameters, xi is a p-vector of covariates, and Φ(·)
denotes the cumulative standard normal distribution function. The second
stage predicts instead the entity of the loss, once this loss has occurred. To
this aim, we use the latent regression model

Y ∗
i = zT

i β
(2) + U

(2)
i (i = 1, . . . , n) , (2)

where β(2) is a q-vector of parameters, zi is a q-vector of covariates, and

U
(2)
i are independent normal errors with zero mean and variance σ2. Let

θ = (β(1), β(2), σ2) denote the overall parameter vector. Based on (1) and
(2), the zero-inflated distribution of the observed Yi (i = 1, . . . , n) is

P (Yi = 0; θ) = Φ(−xT

i β
(1)) + Φ(xT

i β
(1))P (Yi = 0|Si = 1;β(2)) ,

P (Yi = l; θ) = Φ(xT

i β
(1))P (Yi = l|Si = 1;β(2)), l ∈ {1, . . . ,K} , (3)

with P (Yi= l|Si=1;β(2))=Φ(γl+1−zT
i β

(2))−Φ(γl−zT
i β

(2)) (l ∈ {0, . . . ,K}).

3 Robust inference by exponential tilting

Crucial assumptions of the ZIIR model are normality of the actual mone-
tary loss and independence among units. Yet here Y ∗ has a non-negative
support by definition and two observations in CSBS data y1, . . . , yn can re-
fer to the same company which participated, anonymously, in both survey
waves. Such issues clearly invalidate ML results and call for a strategy that
is robust against model misspecification. We suggest to control the indi-
vidual contribution to the global likelihood according to the compatibility
of the specific unit with the assumed model. Following Genton and Hall
(2015), for a fixed level of exponential tilting α ≥ 0, the tilted estimator

θ̂(α) is found by maximizing numerically the tilted log-likelihood function

ℓπ̂(α)(θ) =
n∑

i=1

π̂
(α)
i (θ) logP (Yi = yi; θ) ,
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where P (Yi = yi; θ) is given in (3) and the weights π̂
(a)
i (θ) are obtained by

tilting uniform prior weights πu
i = 1/n, for each i = 1, . . . , n, in the direc-

tion that gives most emphasis to data enjoying larger likelihood. Setting

α = 0 corresponds to ML estimation, as π̂
(0)
i (θ) = πu

i = 1/n for all i.

Under suitable regularity conditions, the estimator θ̂(α) is asymptotically
normal (Choi et al., 2000). Its covariance matrix can be estimated by

V̂
(α)
boot =

n

R− 1

R∑
r=1

(
θ̂(α)r − θ̄(α)

)(
θ̂(α)r − θ̄(α)

)T
, (4)

where θ̂
(α)
1 , . . . , θ̂

(α)
R are estimates of θ computed via standard nonparamet-

ric bootstrap techniques for some α, and θ̄(α) =
∑R

r=1 θ̂
(α)
r /R.

The most appropriate value of α is chosen to minimize the bootstrap mean
squared error (MSE) of the tilted estimator, i.e.

M̂SEboot(α) =
∥∥∥θ̂(α) − θ̄(α)

∥∥∥2
2
+

1

n
tr
(
V̂

(α)
boot

)
, (5)

where tr
(
V

(α)
boot

)
indicates the trace of the covariance matrix (4).

4 Application to cyber security survey data

The above methodology is adopted on the CSBS data in order to investigate
the determinants underpinning costs of cyber attacks. Focusing on for-profit
companies, the response of interest is the cost (in £1000) related to security
breaches experienced by the firm in the last 12 months. This variable is
recorded through intervals only, and in the pooled sample from 2018 and
2019 survey waves the first class [0, 0.5) is observed 22.7% of the times. In
the first stage (1), the vector xi contains 11 dummy variables to identify
the ith firm’s UK industrial sector; in the second stage (2), we considered
in zi all the remaining firm-level predictors (i = 1, . . . , n). The main one is
another banded variable, i.e. the amount invested in cyber security (Invest,
in £1000). Other predictors are the number of breaches (Nbreach), the
presence of a cyber security incident management process (Incid), and the
sales turnover (Sales, in £million) that controls for the company’s size. The
time predictor is coded as a numerical variable, equal to 1 or 2 according
to the first or second wave. To assess the effect of investments over time,
we also include the interaction term between time and amount invested in
security (Time×Invest). For fitting purposes, the values of banded variables
are taken as the logarithm of the observed intervals mid-points.
The estimate of β(1) is not shown here to conserve space. However the
robust ZIIR approach points out, differently from biased ML inference, that
the Administration or Real Estate sector is significantly the most likely to
incur a loss from cyber attacks. Estimates of the second-stage parameters
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TABLE 1. ZIIR model fitted via ML (left) and robust exponential tilting (right).
Statistical significance of coefficients at the 5% level is marked by an aster-
isk. Bootstrap standard errors given in parentheses and bootstrap MSEs in
the last line are based on 2000 replications. The CSBS dataset is available at
www.gov.uk/government/collections/cyber-security-breaches-survey.

ZIIR Robust ZIIR

β̂(2) α = 0 α = 0.74

Incid 0.09 (0.22) -0.27 (0.18)
Sales 0.19 (0.07)∗ 0.16 (0.05)∗
Invest 0.50 (0.16)∗ 0.38 (0.10)∗
Time 1.28 (0.96) 1.28 (0.71)∗
Time×Invest -0.16 (0.10) -0.13 (0.07)∗
Nbreach 0.07 (0.04) 0.05 (0.04)

M̂SEboot(α) 735.43 33.78

in the robust ZIIR model for the optimal α = 0.74 are reported in Table
1, along with ML estimates. The estimated coefficient on Sales suggests
that larger companies typically sustain more substantial losses, as found by
Romanosky (2016). The significant positive coefficient of the investments
variable is evidently due to reverse causality and confirms previous findings
(e.g., Woods and Böhme, 2021). Instead, the significance in the robust
ZIIR of the negative interaction coefficient with time supports the claim
that investing in cyber defence is effective for reducing the cost of cyber
attacks. Overall, the superiority of the robust approach with respect to ML
is attested not only by the smaller size of the bootstrap standard errors
derived from (4), but also by a dramatically lower bootstrap MSE in (5).
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Woods, D.W. and Böhme, R. (2021). SoK: Quantifying cyber risk. In:
2021 IEEE Symposium on Security and Privacy (SP), IEEE, pp.
211 – 228.

566



A new refined non-homogeneous dynamic
Bayesian network with globally coupled
network interaction parameters

Abdul Salam12, Marco Grzegorczyk1

1 Bernoulli Institute, Groningen University, Groningen, Netherlands
2 Department of Statistics, University of Malakand, Chakdara, Dir Lower, KP,

Pakistan

E-mail for correspondence: m.a.grzegorczyk@rug.nl

Abstract: Non-homogeneous dynamic Bayesian networks (NH-DBNs) are a pop-
ular class of statistical models for learning structures of networks that have non-
constant network interaction parameters. For example, in some applications the
network interaction parameters may vary over time and/or the interaction param-
eters may vary with changing experimental conditions. In this paper, we propose
a new refined NH-DBN with globally coupled interactions parameters. The new
model improves upon an earlier proposed globally coupled model, as it intro-
duces segment-specific coupling strength parameters. Our empirical results show
that the new NH-DBN can yield a higher network reconstruction accuracy than
competing NH-DBN models, including the original globally coupled NH-DBN.

Keywords: Network learning; Dynamic Bayesian networks; Bayesian regression

1 Introduction

An important statistical task in computational systems biology is to learn
the structures of cellular networks from experimental wet-laboratory data.
Examples of important cellular networks are gene regulatory networks, pro-
tein signalling pathways and metabolic pathways. The traditional class of
(homogeneous) dynamic Bayesian network (DBN) models is inappropri-
ate if network interaction parameters are not constant. For example, in
some applications the interaction parameters might vary with changing ex-
perimental conditions under which data have been collected, and/or the
interaction parameters might be time-varying when data have been col-
lected over a long time interval. With regard to our application to a small

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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benchmark gene expression data set from yeast (S. cerevisiae), we here de-
scribe the model in terms of the second case.
Many non-homogeneous DBN (NH-DBN) models employ multiple change-
point processes to divide a long time series into shorter time series segments,
and they assume the inferred short segments to have different (‘segment-
specific’) network interaction parameters. NH-DBNs then infer the net-
work structure along with a segmentation of the time series as well as the
segment-specific network parameters from the data. To avoid model over-
flexibility, it was proposed to couple the network interaction parameters
among segments; so as to encourage them to stay similar across segments.
Conceptually, two different coupling schemes can be distinguished: The se-
quential coupling scheme makes use of the temporal order of the segments
and encourages neighbouring segments to have similar parameters. That
is, the network parameters of segment h are encouraged to stay similar to
those of the preceding segment h − 1 (Grzegorczyk and Husmeier, 2012).
The global coupling scheme treats the segments h = 1, . . . ,H as inter-
changeable units and encourages the segment-specific network parameters
to stay similar to each other by imposing a restrictive hierarchical hyper-
prior (Grzegorczyk and Husmeier, 2013). Although the results of compar-
ative evaluation studies suggest that the global coupling scheme leads to
better results than the sequential coupling scheme (see, e.g., the results re-
ported in Grzegorczyk and Husmeier (2019)), in recent years only advanced
sequential coupling schemes were proposed; see, e.g., Shafiee Kamalabad
and Grzegorczyk (2018) for an example. Here we fill a gap and focus on
improving the global coupling scheme, and we propose a new refined model
variant of the NH-DBN with globally coupled interaction parameters. In-
stead of coupling all segments with the same coupling strength parame-
ter λ2, like in the original work by Grzegorczyk and Husmeier (2013), we
here propose to introduce segment-specific coupling strength parameters,
λ2
1, . . . , λ

2
H , so that each time series segment h can be coupled with its

own individual coupling strength λ2
h. We note that the modelling idea is

borrowed from the work by Shafiee Kamalabad and Grzegorczyk (2018),
in which a similar extension for the NH-DBN with sequentially coupled
parameters was proposed.

2 Statistical modelling

Consider a piece-wise linear Bayesian regression model with a response Y
and a covariate set π = {X1, . . . , Xk}. We assume that there are temporal
data points that have been divided into disjoint segments h = 1, . . . ,H,
where each segment h has a segment-specific regression coefficient vector,
βh = (βh,0, βh,1, . . . , βh,k)

T. Let yh be the response vector and Xh be the
design matrix for segment h, where each Xh has a first column of 1’s for
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the intercept. We assume for the likelihood:

yh|(βh, σ
2) ∼ N (Xhβh, σ

2I) (h = 1, . . . ,H) (1)

and for the segment-specific regression coefficient vectors we use the priors:

βh|
(
µ, σ2, λ2

h) ∼ N (µ, σ2λ2
hI
)

(h = 1, . . . ,H) (2)

where σ−2 ∼ GAM(0.005, 0.005), µ ∼ N (0, I), and λ−1
h ∼ GAM(2, 0.2).

For the density of the posterior distribution, we then have:

p(β1, . . . ,βH , λ2
1, . . . , λ

2
H , σ2,µ|y1, . . .yH)

∝ p(µ) · p(σ2) ·
H∏

h=1

p(yh|βh, σ
2) · p(βh|µ, σ2, λ2

h) · p(λ2
h)

With regard to the model inference, we note that the marginal likelihood,
p(y1, . . . ,yH |λ2

1, . . . , λ
2
H ,µ), with σ2 and the regression vectors β1, . . . ,βH

integrated out, can be computed analytically.

Reversible Jump Markov Chain Monte Carlo (RJMCMC)
In many applications the covariates π and the time series segmentation
are unknown and have to be inferred from the data.
First, we assume all covariate sets with up to 3 covariates to be equally
likely, p(π) = c if |π| ≤ 3, while p(π) = 0 if |π| > 3. Second, we assume
the distance between changepoints to be geometrically distributed with
hyperparameter p ∈ (0, 1), and we identify H segments with a changepoint
set, τ = {τ1, . . . , τH−1}; data point t belongs to segment h if τh−1 < t ≤ τh.

RJMCMC simulations can then be used to generate posterior samples

{π(s), τ (s), {λ2,(s)
h }h,µ(s)}s=1,...,S . Our sampling scheme uses the marginal

likelihood, and for sampling the covariates π and the changepoints τ
we implement Metropolis-Hastings moves: Changepoint birth, death and
re-allocation moves on the changepoint set τ , and covariate addition,
deletion and exchange moves on the covariare set π. As the latter moves
are trans-dimensional, there is need for RJMCMC sampling techniques.
We design the RJMCMC sampling moves along the lines of Shafiee
Kamalabad and Grzegorczyk (2018). For lack of space, we cannot provide
the mathematical details here.

Network learning and interaction scores
To learn a network among variables Z1, . . . , Zn we apply the regression
model to each response Y := Zi separately. The potential covariate sets πi

for response Y = Zi are all subsets of the remaining variables, symbolically
πi ⊂ {Z1, . . . , Zi−1, Zi+1, . . . , Zn}.
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FIGURE 1. Model comparison. Left : Model-specific average AUCs for 6 hyper-
parameters p. Right: Example bar plot with 95% confidence interval for p = 0.1.

For the density of the posterior distribution, we then have:

p(β1, . . . ,βH , λ2
1, . . . , λ

2
H , σ2,µ|y1, . . .yH)

∝ p(µ) · p(σ2) ·
H∏

h=1

p(yh|βh, σ
2) · p(βh|µ, σ2, λ2

h) · p(λ2
h)

The marginal likelihood, p(y1, . . . ,yH |λ2
1, . . . , λ

2
H ,µ), with σ2 and the re-

gression vectors β1, . . . ,βH integrated out, can be computed analytically.

Reversible Jump Markov Chain Monte Carlo (RJMCMC)
In many applications the covariates π and the segmentation are unknown
and have to be inferred from the data. We assume all covariate sets with up
to 3 covariates to be equally likely, while p(π) = 0 if |π| > 3, we assume the
distance between changepoints to be geometrically distributed with hyper-
parameter p ∈ (0, 1), and we identify H segments with a changepoint set,
τ = {τ1, . . . , τH−1}; data point t belongs to segment h if τh−1 < t ≤ τh.
RJMCMC simulations can then be used to generate posterior samples

{π(s), τ (s), {λ2,(s)
h }h,µ(s)}s=1,...,S . Our sampling scheme uses the marginal

likelihood, and for sampling the covariates π and the changepoints τ we
implement Metropolis-Hastings moves: Changepoint birth, death and re-
allocation moves for τ , and covariate addition, deletion and exchange moves
for π. As many moves are trans-dimensional, we employ RJMCMC sam-
pling techniques. For lack of space, we cannot provide the details here.

Network learning and interaction scores
To learn a network among variables Z1, . . . , Zn we apply the regression
model to each response Y := Zi separately. The potential covariate sets
πi for response Y = Zi are all subsets of the remaining variables, symboli-

FIGURE 1. Comparison of the network learning performances of four
NH-DBN models. Left : Model-specific average AUCs (vertical axis) for 6 hy-
perparameters p (horzontal axis). Right: Example bar plot of mean AUCs with
95% confidence interval for the hyperparameter p = 0.1. See main text for further
details on AUC scores and the four NH-DBN models: DBN, UC, G and G⋆.

For each interaction, Zj → Zi, we estimate an interaction score

êj,i =
1

S

S∑

s=1

Ij→i(π
(s)
i )

where π
(s)
i is the s-th sampled covariate set for Zi, Ij→i(π

(s)
i ) = 1 if Zj ∈

π
(s)
i , and Ij→i(π

(s)
i ) = 0 else. When the true network structure (= the set

of all network interactions) is known, the network reconstruction accuracy
can be quantified in terms of areas under the precision-recall curve, AUC ∈
[0, 1]. The higher the AUC, the higher the network reconstruction accuracy.

3 Empirical results

We apply the newly proposed NH-DBN model to a small benchmark yeast
gene expression data set. In this application, the gene regulatory processes
are time-varying, because data were collected during an experimentally
imposed transition from galactose to glucose metabolism. Moreover the
network was designed by means of synthetic biology, so that the true
network structure is known; cf. left panel of Figure 2. We refer to the work
by Cantone et al. (2009) for further details on the yeast data.

We use the benchmark yeast data set to cross-compare the learning per-
formances of four NH-DBN models. For each model we use six different
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4 Non-homogeneous Bayesian networks
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FIGURE 2. True (left) and inferred (right) yeast network. When imposing
the threshold 0.7 on the interaction scores, the new NH-DBN(G⋆) learns one in-
teraction too many (ASH1→GAL90) and misses one interaction (GAL4→SWI5).

cally πi ⊂ {Z1, . . . , Zi−1, Zi+1, . . . , Zn}. For each interaction, Zj → Zi, we

estimate a score êj,i =
1
S

∑S
s=1 Ij→i(π

(s)
i ), where π

(s)
i is the s-th sampled

covariate set for Zi, Ij→i(π
(s)
i ) = 1 if Zj ∈ π

(s)
i , and Ij→i(π

(s)
i ) = 0 else.

When the true interactions are known, the reconstruction accuracy can be
quantified via the area under the precision-recall curve, AUC ∈ [0, 1].

3 Results and conclusions

We apply the new NH-DBN to a small benchmark yeast gene expression
data set for which the true gene network is known (Cantone et al., 2009). In
this application, the regulatory processes are non-homogeneous, since data
were collected during a transition from galactose to glucose metabolism.
We apply four NH-DBNS with six changepoint hyperparameters p ∈ (0, 1).
The average network reconstruction scores (AUCs) are shown in Figure 1.
The new globally coupled NH-DBN (G⋆) performs consistently better than
the three competitors, namely a standard DBN, an uncoupled NH-DBN
(UG), and the original globally coupled model (G). The right panel shows
an AUC bar plot with 95% confidence intervals, from which it can be seen
that the improvements are significant. Figure 2 shows the true network and
the network inferred with the new NH-DBN (G⋆) using p = 0.1.
We conclude that the new globally coupled model can yield a higher net-
work reconstruction accuracy than the original globally coupled NH-DBN
from Grzegorczyk and Husmeier (2013). The inferred yeast network, shown
in the right panel of Figure 2, is close to the true network.
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FIGURE 2.True (left) and predicted (right) yeast network. The true yeast
network consists of 8 gene interactions. When imposing the threshold ψ = 0.5
on the interaction scores, êj,i, the newly proposed NH-DBN model (G⋆) learns
8 interactions. The predicted network structure features seven true positive in-
teractions, one false positive interaction (ASH1→GAL80) and one false negative
interaction (GAL4→SWI5). Precision and recall are both equal to 0.875.

hyperparameters p ∈ (0, 1) for the geometric distribution on the distances
between changepoints. We vary the hyperparameter p, as it can be expected
that the number of changepoints (and so the number of data segments) in-
creases in the hyperparameter p.
The average network reconstruction scores (AUCs) are shown in the left
panel of Figure 1. The new refined globally coupled NH-DBN (G⋆) per-
forms consistently better than the three competing models, namely:

� a standard homogeneous dynamic Bayesian network (DBN)

� an uncoupled NH-DBN with independent regression coefficient per
data segment (UG)

� the less flexible originally proposed globally coupled model (G).

Moreover it can be seen that the AUC results are rather robust with
respect to the hyperparameter p. The right panel of Figure 1 shows
an exemplary error bar plot of the average AUCs with 95% confidence
intervals for the hyperparameter p = 0.1. The tiny AUC variations
refer to independent RJMCMC simulations that started from different
random initialisations. From the error bar plot it can be seen that the
improvements that are achieved with the new model are significant.

The two panels of Figure 2 show the true yeast network from Cantone et
al. (left panel) and the network structure that was inferred with the newly
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proposed NH-DBN model (G⋆) using the hyperparameter p = 0.1 (right
panel). It can be seen that the predicted network structure is rather close to
the true network structure. Among the 8 gene interactions with the highest
scores (êj,i > 0.5) there are 7 true positive gene interactions. Precision and
recall are both equal to 0.875 (7/8). In terms of the area under the precision
recall curve, the inferred network yields AUC ≈ 0.88.

4 Conclusions

In this paper we have proposed a new refined variant of the globally cou-
pled non-homogeneous dynamic Bayesian network (NH-DBN) model from
Grzegorczyk and Husmeier (2013). Our empirical results on a small bench-
mark yeast gene expression data set from synthetic biology have shown
that the proposed model refinement can lead to a higher network recon-
struction accuracy. The yeast network structure that was inferred with the
new NH-DBN model, shown in the right panel of Figure 2, is rather close
to the true yeast network structure.
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Abstract: This study was conducted to evaluate the effectiveness of a new
downscaling technique based on variational autoencoder (VAE). This paper
proposes a new urban-scale downscaling framework method by merging a VAE
and VAE regression. The proposed method introduces a strategy to regressor the
latent space of a complex urban-scale temperature image which is pre-trained by
a VAE model. The regressed response in the latent space is embedded into a
generative model so that local-scale temperature is able to estimate the
urban-scale. This study demonstrate that the proposed technique is applicable
to urban-scale meteorology research and potentially applicable other areas.
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1 Introduction

Nowadays, most weather disaster occur at local or micro-scale level. Down-
scaling is necessary and increasingly being used as a method to handle
detailed spatiotemporal meteorological information. The downscaling tech-
niques with deep learning methods are cost-effective and easier to imple-
ment than nested mesoscale models and have proven to be as accurate as
those with dynamical downscaling methods.

Accarino et al. (2021) presented a multi-scale gradients generative adver-
sarial network for statistical downscaling of 2-meter temperature over the
European domain, the results show an accurate and cost-effective solution
of downscaling to the 2m temperature climate maps. Kingma and Welling
(2014) introduced a powerful algorithm for efficient inference and learning
Auto-Encoding variational Bayesian (AEVB) learned and an approximate
inference model using the stochastic gradient variational Bayes (SGVB) es-
timator. Laubscher and Rousseau (2020) applied generative deep learning

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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to predict temperature and other data types. Zhao et al. (2019) introduced
a generalized regression model based on the variational autoencoder (VAE)
framework and applied it to the problem of predicting age from structural
MR images, where this method provides more accurate brain predictions
than regular feed-forward regressor network.
We studied the downscaling of air temperature with VAE regression model
in deep learning.

2 Method

2.1 Overal Scheme

The study region, Seoul (605 km2) is the capital city of and largest metropo-
lis in the Republic of Korea, in Northeast Asia. The response y is defined as
urban-scale temperature field(50×90 gird by 500 m) from observed data.
The corresponding input x is defined local-scale temperature prediction
field(29×20 grid by 1.5 km) from LDAPS. The data collection period was
2018-2020.

FIGURE 1. Overall scheme of the proposed method.

We propose a new downscaling framework method by merging VAE and
VAE regression. As shown in Figure 1, for the observed data yi, i =
1, · · · , N the encoder/decoder produces which is the reconstruction of an
observed data yi. For the observed data, the encoding network qϕy

(z|y)
produces mean (µy) and variance (σ2

y) for a part of the latent vector ci.
Using sampled from N(µy, σy), the decoding network pθy (y|c) reconstructs
the output response ŷi. For the input data xi, it is difficult to produce to
yi directly because yi have a high dimension space than xi. To produce
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yi, we estimate a low-dimensional latent vector ci from the encoding net-
work qϕy

(c|y) using a regressor qϕx
(c|x). After ĉ is estimated, the output

response ŷi is reconstructed from ĉ using the decoding network pθy (y|ĉ).

3 Experiment

We applied the proposed method to air temperature forecasts with 1.5-km
resolution (LDAPS) for Seoul metropolitan area and downscaled it to 500-
m resolution. We performed an accuracy test of the proposed downscaling
method with regard to the hour temperature during the three month(July,
August and September 2020, 09:00-23:00). We predicted temperatures were
compared to the AWS observation. The respective mean value of RMSE
and R2 were calcuated (Table 1): 1.28 and 0.70, respectively, for ŷ, 0.03 and
0.67, respectively, for ĉ, 1.36 and 0.62, respectively, for x̂. The estimation
of the latent vector from the encoding network qϕy (c|y) was found to be
well estimated using the regression term qϕx

(c|x).

TABLE 1. The respective mean value of RMSE and R2 for the test periods

ŷ r̂ x̂

RMSE 1.28 0.03 1.35
R2 0.70 0.67 0.62

(a) (b)

(c) (d)

FIGURE 2. Spatial accuracy evaluation for test data (predict day : Septem-
ber 29, 2020, 14:00 KST). (a) True spatial distribution(y), (b) Predicted spatial
distribution(ŷ). (c) The difference between y and ŷ (RMSE 0.294), (d) Scatter-
plot of y and ŷ (R2 0.928)
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4 Conclusion

We proposed a new urban-scale downscaling framework method by merg-
ing a variational auto encoder (VAE) and VAE regression. We applied
the proposed method to air temperature forecasts with 1.5-km resolution
(LDAPS) for Seoul metropolitan area and downscaled it to 500-m resolu-
tion. The result of this experiment, the estimated ŷ showed spatially high
accuracy and similarity to y. In some results, however, there was a sig-
nificant difference between y and ŷ. Further studies should be performed
considering a time series such as LSTM, which can lead to robust results
and a more precise quantification. This study suggest that the proposed
a new downscaling approach can be applied to solving problems related
to urban-scale meteorology, as well as its potentially applicable to other
metropolitan areas.
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Abstract: We propose a methodology for European options pricing in which
the Hawkes process drives variations in asset prices. This construction preserves
the Brownian diffusion behavior when it comes to the microstructure level. We
associate two point processes corresponding to the sum of the asset’s positive
and negative jumps, respectively. The point processes have a self and mutually
exciting stochastic intensities with an exponential kernel. We employ a mean sig-
nature plot to estimate the parameters. We examine the model’s implementation
in real data applications and compare it with the Black-Scholes formula.

Keywords: Microstructure noise; Point process; Signature plot.

1 Introduction

The recent availability of high-frequency financial data prevails the issue
of controlling the market microstructure noise. To circumvent the effect of
microstructure noise, Engle and Russell (1998) introduced the first point
process with dependent arrival rates, namely Autoregressive Conditional
Duration (ACD) model for irregular intervals. Later, Bowsher (2007) mod-
eled multivariate market events such as the timing of trades and mid-quote
changes using the Hawkes process with vector conditional intensity. Hawkes
process, introduced by A.G. Hawkes (1971), is a class of multivariate point
processes with self and mutually exciting stochastic intensities.
One can find wide applications of the Hawkes process in finance. Barcy
(2015) provides an excellent survey of Hawkes process in finance, focusing
on high frequency and market microstructure noise. Barcy (2013) intro-
duced a tick-by-tick model using the multivariate Hawkes process, which
deals with the effect of microstructure noise and also preserves the Brow-
nian diffusion behavior on large scales. In this paper, we work on similar
lines as Barcy (2013) to price the options. The model is associated with

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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two point process corresponding to positive and negative jumps of the asset
prices with appropriate stochastic intensities.
The rest of the paper is organized as follows. Section 2 illustrates the
Hawkes process in detail, explaining the bivariate counting process and
intensity functions. Section 3 provides the methodology followed in this
paper, including a detailed explanation of parameter estimation using sig-
nature plot and the option pricing algorithm. Section 4 presents the empir-
ical results, comparing the proposed method and the Black Scholes model.
Section 5 delivers the concluding remarks.

2 Hawkes Process

We have considered two counting processN1(t) andN2(t) over time horizon
t ∈ [0, T ] representing the sum of positive and negative jumps of asset price
respectively. Let X(t) be the price of the asset for t ∈ [0, T ] such that:

X(t) = N1(t)−N2(t). (1)

As defined by Barcy (2013), the bivariate process {N1(t), N2(t)} is said to
be linear Hawkes process if N1(t) and N2(t) have no common jumps and if
there exist non-negative functions {ϕij}i,j=1,2 such that:

λi(t) = µi +

∫ t

− inf

ϕij(t− s)dNi(s) +

∫ t

− inf

ϕij(t− s)dNj(s). (2)

We have considered a simplified version of the intensity function with only
mean reverting terms, given as:

λ1(t) = µ+

∫ t

−∞
ϕ(t− s)dN2(s)

λ2(t) = µ+

∫ t

−∞
ϕ(t− s)dN1(s) (3)

where µ is an exogenous intensity and ϕ(t) is a right-sided exponential
kernel defined as:

ϕ(t) = ω exp(−δt)1R+(t) (4)

where ω, δ > 0 and ϕ(t) satisfy the stability condition:

||ϕ||1 =
ω

δ
< 1. (5)

3 Methodology

3.1 Parameter estimation

The estimation of the parameters can be done using the best fit of the
realized signature plot to the mean signature plot. For exponential kernel
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defined in (4) with the stability condition (5), we have the mean signature
plot as:

C(τ) =
2µδ

(δ − ω)(ω + δ)3τ
[δ2 + ω(ω + 2δ)(1− exp{−(ω + δ)τ}]. (6)

The realized signature plot is the realized volatility of X(t) over [0, T ],
defined as:

Ĉ(τ) =
1

T

T/τ∑
n=0

|X((n+ 1)τ)−X(nτ)|2. (7)

There are mainly 3 parameters which we have defined using the parameter
space θ = (µ, ω, δ) and let F (θ) is the regression estimator given as:

F (θ) = |Ĉ(τ)− C(τ)|2. (8)

We applied Newton Rapson iterations on the regression estimator to obtain
the parameter space θ.

3.2 Option Pricing

In this section, we explain the procedure to price the options:

1. Choose M large enough such that:

λ1(t) < M and λ2(t) < M, ∀t ∈ [0, T ].

2. Simulate on [0, T ] a standard Poisson process with an intensity M
and apply thinning procedure to each jump of the obtained process
as follows:

(a) Reject the point with probability (M − λ1(t)− λ2(t))/M

(b) Mark the point as jump of N1(t) with probability λ1(t)/M

(c) Mark the point as jump of N2(t) with probability λ2(t)/M

3. Obtain the cumulative sum of jumps corresponding to N1(t) and
N2(t), written as Ñ1(t) and Ñ2(t) respectively. The simulated path
X̃(t) is then given as:

X̃(t) = Ñ1(t)− Ñ2(t), ∀t ∈ [0, T ]. (9)

4. Using the simulated path of X̃(t), the simulated option price ÕT is:

ÕT = (X̃(T )−K)+, where K is the strike price. (10)

5. Repeat step 2 to step 4 for a large number N simulations and take
an average of the simulated option prices.
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4 Empirical Results

We apply the modeling framework to the Indian stock market index Nifty50
corresponding to one-day and one-week option prices for an empirical il-
lustration. For our study, we have downloaded the tick-by-tick asset price
from Dukascopy Swiss Banking Group. The options data corresponding
to the same asset is obtained from NSE India website. The time period
of the data is 3.5 months, from Jun 2021 to Sep 2021. An initial period
of 3 months of this data is a training sample, which we used for stable
parameters estimation. The remaining dataset is used as a test sample.
We have shown Nifty option prices data on 1-Sep-2021 expiring on 2-Sep-
2021 and 9-Sep-2021 corresponding to various strike prices. Model price is
the price obtained from applying the methodology described in section 3.
Black Scholes price is the price obtained from employing the famous Black
Scholes model. Price of Nifty50 on 1-Sep-2021 is 17076.25. In Table 1 and 2,
we also present the last traded prices to test our model. It is observed that
our model gives better prediction compared Black Scholes model which is
generally upward biased.

TABLE 1. Nifty option prices on 1-Sep-2021 expiring on 9-Sep-2021 compared
to purposed model and Black Scholes prices.

Strike Price Last Traded Price Model Price Black Scholes Price
15000 2132.8 2383.921 2502.19
15500 1572.60 1883.92 2153.53
16000 1080.8 1384.38 1836.41
16500 567.05 894.09 1551.68
17000 88 495.17 1299.31

TABLE 2. Nifty option prices on 1-Sep-2021 expiring on 9-Sep-2021 compared
to purposed model and Black Scholes prices.

Strike Price Last Traded Price Model Price Black Scholes Price
15500 1589.1 1559.58 1658.89
16000 1089.25 1059.58 1242.76
16500 595.45 559.58 883.42
17000 168.2 40.99 592.66
17500 14.05 3.63 373.83

5 Conclusion

We have priced the options using a bivariate tick-by-tick asset price model
with stochastic intensities. The actual data study shows that pricing using
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Hawkes process produces better results than the Black-Scholes model.
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Abstract: More than 65 years after the publication of C14 dating we present
a new chronometric method for the dating of wood based on molecular decay
(MD). Infrared spectroscopy is used to detect the chemical changes over time.
The presented prediction models cover a maximum of 815 years. The models
considered here are valid for Scots pine (Pinus sylvestris).
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1 Introduction

In this study we applied the random forest method and one-dimensional
convolutional neural networks (CNNs) to model the age of pinewood. Previ-
ous studies (Tintner et al., 2020a, 2020b) have shown that different models
are needed to predict the age of different tree species.
In the field of machine learning, tree-based methods for regression are well
established (Hastie et al. 2017; Gareth et al. 2021). Although tree-based
methods are simple and useful for interpretation they lack prediction accu-
racy, i.e., they produce good predictions on the training set, but are likely
to overfit the data, leading to poor test set performance. To overcome these
drawbacks the random forest method was introduced by Breiman (2001).
On the other hand, since their introduction by LeCun et al. (1989) in the
early 1990’s, CNNs have demonstrated excellent performance at classifica-

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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tion and prediction tasks. However there is still no clear understanding of
why they perform so well.
The objective of this work is to establish a dating tool for wooden artefacts
based on the relation between chemical characteristics of the decay and
time. The chemical decay is revealed by means of infrared spectroscopy—a
rapid and cheap analytical method. Dendrochronology serves as the refer-
ence method. Additionally, we focus on the explainability of the models.
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FIGURE 1. Variable Importance Plot of the random forest model; the 30 most
important variables are plotted.

2 Materials and methods

2.1 Sample description

The pinewood samples (Pinus sylvestris) investigated in this study came
from Europe. We restricted our analysis to pieces younger than AD 1,200.
Approximately every tenth tree ring of the samples was recorded. The mea-
sured FTIR-spectra were smoothed, and the second derivative was applied.
Both spectra, the smoothed as well as the second derivative one, were used
for statistical analysis.

2.2 Statistical analysis

All statistical analysis was done using the statistical computer software
language R. The R package randomForest (Liaw and Wiener, 2002) was
used to fit random forest models to the data. CNNs were trained using the
R package keras (Allaire and Chollet, 2022).
Hence, the data were analyzed as follows. First, either a random forest
model or a CNN was fitted to the data. This step will be referred as ba-
sic model in the following. As the predicted values yi of the basic model

583



Spangl et al.

often underestimate the true year xi for all species, especially for very old
probes, we additionally calibrate the predicted years. We call this combined
approach ‘MD-dating’.
Both approaches, basic modelling and MD-dating, were compared by 10-
fold cross validation based on their averaged RMSEP.
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FIGURE 2. Measuring the feature importance in CNN models; dark colors indi-
cate wave numbers that are important for predicting the age of pinewood.

To achieve explainability of the models, i.e. to decide which wave numbers
are important for predicting the age of pinewood, usually the Variable Im-
portance Plot is used for random forest models. In Figure 1 the 30 most
important wave numbers are listed. For CNN models we adapted the occlu-
sion sensitivity approach proposed by Zeiler and Fergus (2013) to measure
the feature importance. The result is plotted in Figure 2. Dark colors indi-
cate wave numbers that are important for predicting the age of pinewood.
Comparing the results they agree on most wave numbers. However, the oc-
clusion sensitivity approach found wave numbers between 1100 cm−1 and
1000 cm−1 to be additionally important.
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3 Conclusions and outlook

A big strength of this method is the strictly monotonous molecular decay.
This distinguishes it from other methods, especially from dendrochronol-
ogy, where it might happen that different results far away from one other
appear equally probable. But in C14 dating there are time spans at which
calibration curves bend into a plateau as well. In comparison with C14,
dating the comparably far lower costs here serve as another main advan-
tage.
Future work will focus on the comparison with further statistical learning
algorithms like generalized additive models (GAMs) and on refining the
prediction accuracy taking the longitudinal structure of the measurements
into account.
The combination of the spectral method and statistical learning algorithms
are a promising approach to stimulate and support the work of building
historians, archaeologists, and even environmental scientists.
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Abstract: Maps of return levels provide information about the spatial varia-
tions of the risk of extreme precipitation and are expected to be useful for infras-
tructure planning. In this paper we analyze a collection of spatially distributed
time series of precipitation in Georgia (USA): exploiting a spatial hierarchical
Bayesian model we can produce maps of precipitation return levels with uncer-
tainty measures. Inference about the parameters and spatio-temporal predictions
are obtained via Markov Chain Monte Carlo (MCMC) simulation.

Keywords: Extreme value, Bayesian Hierarchical model, Rainfall, Georgia.

1 Introduction

Extreme value theory finds wide application in environmental sciences. Ex-
treme meteorological events such as high rainfall and windstorms arise due
to physical processes and are spatial in extent. These events are usually
characterized by limited predictability and can cause significant econom-
ical and social damages. We mention for example the catastrophic flood
that impacted North Georgia, in particular the Atlanta metropolitan area,
on September 2009 as a result of multiple days of prolonged rainfall. The
flood is blamed for at least 10 deaths and $500 million in damage (Na-
tional Weather Service). Although these extreme precipitation events are
rare, understanding their frequency and intensity is important for public
safety and long-term planning.
A rich statistical literature concerned with modeling extreme events is avail-
able and Coles (2001) provides a comprehensive introduction. Standard
approaches utilize generalized extreme value (GEV) distributions (Fisher
and Tippett, 1928) and Generalized Pareto Distribution (GPD) (Gnedenko,

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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1943). In Davison et al. (2012) are identified three main classes of statisti-
cal models for spatial extremes: Bayesian hierarchical models, copula based
models, and max-stable process models. Latent variable models arise natu-
rally in the Bayesian framework and have been widely used in the context
of extremes (see e.g. Cooley et al., 2007). A particular issue when dealing
with extremes is that although vast amounts of data may be available rare
events are necessarily unusual and so the quantity of directly relevant data
is limited. One of the advantages of the Bayesian approach is the possibility
to incorporate reliable information supplementary to the data in the form of
prior distributions. In this paper we focus on the Bayesian method recently
proposed in Stolf and Canale (2022), a specification that does not make
any asymptotic assumption and explicitly takes into account the spatial
dependence of the data.

2 A hierarchical Bayesian Extreme Value Model

Let xij(s) denote the magnitude of the i-th event within the j-th block for
the site s, where j = 1, . . . , J with J the number of blocks in the observed
sample, i = 1, . . . , nj(s) with nj(s) the number of events observed within
the j-th block for the site s and s = 1, . . . , S with S the total number of
stations. Traditional approaches focus on the distribution of block maxima
for each station Yj(s) = maxi{xij(s)} only, discarding the ‘ordinary val-
ues’. This approach has several limitations. First, the number of events per
block may be often not large enough for the asymptotic argument to hold
(Koutsoyiannis, 2004) and second the assumption of a constant parent dis-
tribution is unrealistic in many contexts. Based on these considerations a
hierarchical Bayesian extreme value model that avoids the asymptotic ar-
gument and accounts for possible inter annual variability in the magnitude
of the events was introduced in Zorzetto et al. (2020), building upon the
results discussed in Marani and Ignaccolo (2015).
By considering some physical process such as rainfall, one can expect that
nearby locations will exhibit similar behavior, and in the Bayesian frame-
work the reduction in uncertainty gained from pooling over space is par-
ticularly useful. Thus, spatial modelling of extremes is expected to reduce
the overall uncertainty in extreme values estimates, by borrowing strength
across spatial locations. For these reasons starting from the approach pro-
posed in Zorzetto et al. (2020), Stolf and Canale (2022) include the spatial
dependence of the data in the model, incorporating in the layers of the hi-
erarchical model geographical features, to make predictions at unobserved
sites. We adopt the latter model specification, where the events within a
block, xij(s), conditionally on unobserved latent processes are assumed to
be conditionally independent with common parametric cdf F (·; θj(s)), with
θj(s) ∈ Θ unknown parameter vector. For technical details see Stolf and
Canale (2022).

587



Stolf and Canale

3 Georgia rainfall data analysis

This study uses daily precipitation observations from the United States
Historical Climatological Network (USHCN), a high-quality source of data
sets freely available. We use all available stations in Georgia which contain
more than 80 years of data from 1892 to 2021. The number of stations
included is 20.
Data are analyzed applying the spatial hierarchical Bayesian model
(sHMEV) of Stolf and Canale (2022). In particular, we consider as geo-
graphic covariates to be included in the model, in addition to latitude and
longitude, also the altitude since there are some mountainous ranges in the
northern part of the region. We fit the model only on the first 20 years of
observations for each station and we use the remaining records to validate
it.
Adopting a Bayesian methodology allows to make inference on any func-
tional of the posterior distribution (like our target, the cumulative prob-
ability of block maxima) and uncertainty measures result naturally from
the sampling procedure. Figure 1 shows maps of the predictive pointwise
posterior mean for the 25 year return levels, with pointwise 90% credible
intervals width. To create these maps the study region was divided into a
grid of points, and considering the posterior draws and the values of the co-
variates for each point is straightforward to obtain draws for the posterior
distribution at any grid point. We observe higher return levels for the north

FIGURE 1. Maps of the predictive pointwise 25 year return level estimates for
rainfall (mm). Predictive pointwise posterior mean (left) and the width of the
90% pointwise credible intervals (right).
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FIGURE 2. Quantiles predicted for the stations of Waycross and Gainesville by
the GEV (green), POT (blue), and spatial hierarchical Bayesian (red) models.
Solid lines show the expected value of the quantile for a given return time, while
dashed lines represent the bounds of 90% credibility intervals. Triangles represent
the maxima on the training set, while the circles represent the maxima on the
test set.

mountain area and for the south area, in particular on the southeast of the
region near the Atlantic Ocean. There are a few points in the mountainous
area with rather high return values and great variability. This is due to the
high values of altitude for those points, much greater than for the sites in
the data, that lead to a more uncertain extrapolation.
In order to evaluate the performance of the model we compare it with
Bayesian implementations of standard alternative methods: GEV and peak
over threshold (POT). Since the focus is the right tail of the distribution
of the block maxima, we evaluate the predictive accuracy in estimating
the true distribution of block maxima on the test set. Figure 2 shows two
representative examples. Specifically, the quantile versus return time plots
obtained for the different methods for two sites, Waycross and Gainesville,
are reported. The fist station is in south Georgia, while the second one is
located north of Atlanta. For both stations the spatial hierarchical model
presents an overall good agreement with the empirical frequencies associ-
ated to the annual maxima extracted from the entire record, and yields
quantile estimates with narrower credibility intervals. POT and GEV ap-
pear to be more sensitive to the smallest observations in the training set
and tend to underestimate the quantiles. This behavior is expected given
the limited length of the records, as observed in Stolf and Canale (2022).
In this case the spatial hierarchical model, exploiting also information from
the other sites (borrowing strength), manages to obtain more accurate and
less variable estimations than the competitors.
This analysis shows the potentiality of the spatial hierarchical models

589



Stolf and Canale

framework for extreme precipitation, although a more detailed comparison
via simulated and real data sets is needed. A major asset of latent variable
models is flexibility: the approach discussed above can be generalized or
extended to study different natural phenomena.
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Abstract: In the decision making process for policies in public health, models
are becoming increasingly important to estimate the impact of policies on preva-
lences of future risk factors and related diseases. This study presents a modelling
approach for both people’s drinking status (never drinker, drinker or ex-drinker)
as well as the amount of alcohol consumed by drinkers. Cross-sectional data
was used in order to match the population distribution of the Netherlands. In
addition, longitudinal data was used to capture individual trajectories, i.e., the
evolution of any individual’s drinking status over time.

Keywords: Alcohol; Health Modelling; Statistical Model

1 Introduction

The use of alcohol is a major risk factor for disease burden and causes
substantial health loss (Griswold. Max G et al. 2016). To prevent harmful
effects of alcohol use on health, countries are enrolling control policies, such
as minimum unit pricing (Beeston 2020). In the decision making process for
such prevention policies, models are an important support tool to evaluate
the expected impact of an intervention or policy measure. A model that
predicts trajectories of alcohol consumption is therefore useful to (1) predict
the future prevalence of alcohol use without (extra) interventions and (2)
to estimate the impact of interventions.
This study presents a model of alcohol use based on historical data. As
such, it predicts future alcohol consumption under ‘constant policy’. The
aim is to later extend the model to include the effect of interventions.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Model Description

The model consists of two parts. Firstly, it models the drinking status of
any person in the Dutch population: the person either has never drunk
alcohol, drinks alcohol, or is an ex-drinker. Secondly, for any individual
who drinks alcohol it models how many glasses of alcohol (s)he drinks on
average per week.
The model parameters are fitted on a combination of a large cross-sectional
dataset and a smaller longitudinal dataset. This ensures that the model
captures both the population distribution in the Netherlands and individ-
ual trajectories of alcohol use. An individual trajectory here refers to the
evolution of an individual’s drinking status and alcohol consumption. We
describe both fitting procedures one by one.

3 Population Level Distribution

The Public Health Monitor dataset is a large cross-sectional dataset that is
representative of the Netherlands. It is based on a health-related question-
naire with more than 400,000 respondents (Community Health Services,
Statistics Netherlands & RIVM, (2016)). We use the Public Health Mon-
itor to determine the model parameters that describe the population dis-
tribution of drinking status and of the amount of alcohol consumption. In
this dataset, being a drinker is defined as having drunk alcohol in the past
12 months. Figure 1 shows how the average number of glasses consumed
per week by drinkers is distributed in the Public Health monitor dataset.
Here, abstainers are removed from the data.
To determine the population distribution of drinking status, we fitted a
multinomial model. The determinants age (continuous), sex (male, female)
and level of education (low, middle, high) were used as predictors, as is
common in public health models. The relationship between age and drink
status was modelled through a cubic spline with 5 knots, and interactions
between sex and education, age and sex, and age and education were in-
cluded. Figure 2 shows the modelled proportion of drinkers together with
the data, over age and stratified by sex and education level.
Next, we modelled the number of glasses that alcohol drinking persons drink
on average per week based on the cross-sectional sample. Subsetting the
data by omitting abstainers and ex-drinkers (blue in Figure 1) corresponds
to a hurdle approach for dealing with zero-inflation. A negative binomial
distribution was fitted to the remaining data (red in Figure 1) for drinkers,
with age, sex and level of education as predictors. The relationship between
age and the number of glasses was modelled through a cubic spline with 5
knots, and interactions between sex and education, age and sex, and age
and education were again included. Figure 3 shows the modelled number
of glasses for drinkers together with the data.
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FIGURE 1. Histogram of the average consumed number of glasses of alcohol
per week in the Public Health Monitor dataset, by sex and level of education
(truncated to <25 glasses). Counts of zero’s for abstainers and ex-drinkers are
indicated in blue, counts for drinkers are indicated in red.

4 Transition Probabilities

In order to describe the evolution of an indivual’s drinking status, we de-
termine transition probabilities - or rather, transition rates - between the
three drinking states. Describing the evolution of an individual’s alchol
consumption is also part of the study, but this is still work in progress.
We use the Doetinchem Cohort Study to illustrate the transition proba-
bility model. The Doetinchem Cohort Study is a longitudinal study that
followed a sample of individuals from the municipality of Doetinchem in
the Netherlands for the past 30 years, in time intervals of approximately
5 years (Verschuren et al. 2008). A drawback of the Doetinchem cohort
study in this approach is that the closed cohort contains no young indi-
viduals for recent years, and in general little young persons. The answers
to the question ”Do you drink alcohol?” in the questionnaire for partici-
pants were used to determine the drinking status of any participant during
any measurement. Transitions from drinker to never-drinker were present
in data and here, the end-point never-drinker was replaced by ex-drinker.
We illustrate how we determine the rate to stop drinking - the other tran-
sition rates follow in a similar fashion. First, we list all transitions in the
dataset. Any two successive drinking states of the same person form a
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FIGURE 2. Proportion of drinkers over age, according to the model (red line)
and according to the data (black points), by sex and level of education.

transition. Next, we select all transitions that have as initial drinking sta-
tus ‘drinker’. For every such transition i we define the variable stopsi
to indicate whether the person stopped drinking during the transition
(stopsi = 1) or not (stopsi = 0). This variable is binomially distributed,
stopsi ∼ B(n = 1, pi), where pi is the probability to stop drinking during
the transition. We assume that - just like in survival analysis - pi depends
on the ‘stopping rate’ ri and on the length of the time interval (∆t)i as

pi = 1− exp(−ri(∆t)i). (1)

Subsequently, we assume a linear dependence of the log-rate on age agei,
age2 age2i , sex sexi, education level edui and calender time ti, i.e.,

log(ri) = b1 · agei + b2 · age2i +
∑
k

δsexi,kb3k +
∑
l

δedui,lb4l + b5 · ti, (2)

where the first summation is over male and female, the second summation
is over all education levels, and δk,l denotes the Kronecker delta. The co-
efficients b1, b2k, b3l and b4 follow by fitting a binomial regression model
with the complementary log-log link function (and with log(∆t)i as offset).
Figure 4 shows the proportion of drinkers that stop drinking within a time
interval of 5 years, both according to the model and according to the data.

594



ten Dam et al.

low education middle education high education

m
ale

fem
ale

20 40 60 80 20 40 60 80 20 40 60 80

5

10

15

5

10

15

age

m
ea

n 
nu

m
be

r 
of

 g
la

ss
es

 p
er

 w
ee

k

FIGURE 3. Mean number of glasses of alcohol per week of drinkers, according to
the model (red line) and according to the data (black points), by sex and level
of education.

5 Discussion and Conclusion

We designed and fitted complementary models to describe alcohol con-
sumption in The Netherlands using age, sex and level of education as
predictor variables. A cross-sectional dataset was used to describe alco-
hol consumption on a population level and transition probabilities were
estimated based on a longitudinal dataset to describe the evolution of an
individual’s drinking status. The transition model and model for the num-
ber of glasses together form a hurdle modelling approach that is suitable
for the zero-inflated count data. Describing the evolution of the number of
glasses within a person who drinks is still work in progress. Other future re-
search includes calibrating the transition probabilities and the time trend
from the longitudinal data using cross-sectional data. Next, we used the
Doetinchem dataset to illustrate our modelling approach while using a lon-
gitudinal dataset which includes young persons is recommended to better
estimate transition probabilities for this group. Concluding, this approach
is able to predict alcohol trajectories of a population, whilst providing the
possibility to encoperate interventions. The approach can be used to model
other risk factors as well, such as smoking.
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FIGURE 4. Share of people who stop drinking during a time interval of five years,
by sex and level of education.
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Abstract: In another IWSM contribution (Vávra and Komárek, 2022), we
present the model-based clustering (MBC) approach towards segmentation of
units based on multivariate mixed type longitudinal data. The method is based
on a Bayesian approach and a multivariate variant of Generalized Linear Mixed
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1 EU-SILC database and research problem

In 2003, core member states of European Union agreed to launch an in-
strument aiming at collecting timely and comparable cross-sectional and
longitudinal multidimensional micro-data on income, poverty, social exclu-
sion and living conditions leading to the EU-SILC project. In our analysis,
we focus on the Czech subset of the longitudinal part of data gathered an-
nually with the aim to identify the incidence and dynamic processes of the
persistence of poverty and social exclusion among subgroups in population.
The changes are followed up only for a limited duration – a period of four
years. This is induced by a rotational panel, where each year a quarter of
households is replaced by a set of newly observed households of comparable
size. Since 2005, data from n = 23 360 Czech households observed exactly
for ni = 4 consecutive years have been gathered until 2018.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Model structure

To identify poverty and social exclusion temporal patterns in households
economics, we exploit methodology proposed by Vávra and Komárek
(2022), further referred to as [VK]. Therein a mixture of generalized linear
mixed-effects models (GLMM) is assumed over a chosen set of outcomes
of diverse nature. The goal of our analyzis of the EU-SILC database is to
identify different groups of households with homogeneous evolution pat-
terns. One of the reasons why we look for different groups within the data
may be the economical crisis that has struck in 2008 and could have had
significant impact on the prosperity of households. Increasing, stagnating
or even decreasing trends in time (and their different combinations with
respect to different outcomes) are expected to be discovered.
We will start first by introducing the chosen outcomes and the covariates
that may help in explaining the outcomes behavior. Only household-level
variables are used for this analysis to avoid nested effects; complex variables
(income, education, . . . ) are originally measured at the personal level and
then aggregated to construct household-level variables.

2.1 Outcomes of interest

First, we list outcomes of interest being primarily used for clustering the
households, while distinguishing their several types.

� Numeric outcomes (modeled on logarithmic scale)
– HX090 – Equivalised total disposable income [EUR/year]

The sum of gross personal income components of all household
members divided by the Equivalised household size

– HS130 – Lowest income to make ends meet [EUR/month]

The very lowest net monthly household income required to pay
for the usual necessary expenses

� Binary outcomes (Yes / No)

– HS040 – Affordability of a one week holiday

Capacity to afford paying for a one week annual holiday away
from home

– HS060 – Afford to pay unexpected expenses

Capacity to face unexpected financial expenses

� Ordinal outcomes (self-evaluation by the respondent)

– HS120 – Ability to make ends meet

with great difficulty (1) < · · · < very easily (6)
– HS140 – Financial burden of the total housing cost

a heavy burden < a slight burden < not a burden at all

� Categorical outcomes (Yes / No – cannot afford / No – other reason)

– HS090 – Do you have a computer?
– HS110 – Do you have a car?
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2.2 Other covariates

The dataset also offers plenty of potential regressors to be used in the
GLMM’s underlying the households segmentation:

� Time will be considered as the most important and will be used for
distinguishing the groups. We define the time covariate as the number
of years past the beginning of 2005, which limits the time into the
interval [0, 14). Note that the interviews in the Czech republic were
held in either Q1 or Q2.

� Equivalised household size expresses how large the household is while
taking the age of its members into consideration. The head of the
household (respondent) has a unit weight, while other members have
either 0.5 (older than 14) or 0.3 (younger than 14).

� Level of urbanisation was divided by the population density and min-
imum population into the following categories:

1. thinly-populated area (non-urban),

2. intermediate area (at least 300 inhabitants per km2, minimal
population of 5 000),

3. densely populated area (at least 1500 inhabitants per km2, min-
imal population of 50 000),

4. Prague (the highly-populated capital city).

� The highest ISCED (education) level achieved within the whole
household rarely attains the lowest possible option of primary ed-
ucation. Hence, we merge it with lower-secondary education. Then,
follows the most common upper-secondary education. Finally, the
third category contains both post-secondary and the tertiary educa-
tion level (a university degree).

� Presence of student or baby indicate whether some household member
currently attends any educational institution or is younger than 3
years, respectively.

2.3 The model settings

In total, we deal with eight outcome variables for which a mixture of mul-
tivariate GLMM’s is specified as outlined in Vávra and Komárek (2022).
The evolution in time is captured by a quadratic spline parametrization
and this is also a group-specific part of the model to capture possibly dif-
ferent patterns in data. Remaining covariates are included additively in the
model formula without any interaction. Their effects are estimated to be
common to all households regardless of the cluster allocation. The random
effects part is formed solely by the random intercept term; not only do the
random effects capture the specific level of a household, but they channel
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FIGURE 1. Evolution in time of all eight outcomes in discovered clusters.
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the marginal associations among outcomes through a common covariance
matrix (Σ in [VK]).
These correlations among outcomes are assumed to be the same across
all clusters, hence Σ is common to all clusters. The precision parameters
for the numeric outcomes (τ in [VK]) and ordered intercept terms for the
ordinal outcomes (c in [VK]) are both set to be cluster-specific, for the
former can account for different variability, while the latter accounts for
different distribution of ordinal levels (intercepts are cluster-specific for all
outcomes anyway).
To estimate the suitable number of clusters we adopted the sparse finite
mixture approach used by Frühwirth-Schnatter and Malsiner Walli (2019).
Hence, the maximal number of underlying clusters has been set to Gmax =
20 and sparsity was induced by a Dirichlet prior favouring emptying the
mixture components.
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3 Results

Under settings above, the sampled Markov chains converged to a four-
cluster solution. Households were assigned to the cluster of the highest
frequency of sampled allocation indicators provided it was higher than 50%,
otherwise the household remained unclassified (0.55% of households). The
clusters will be referred to by the assigned colours in Figure 1.
First, the irregular curves of the red cluster (0.12%) have to be addressed.
These households have experienced unusually low values of the Equivalised
total disposable income and, hence, should be considered as outliers. The
remaining three clusters: the blue (3.65%), the yellow (17.11%) and the
green (78.57%) share very similar shape evolution curves of both types
of income - an increasing trend till 2009, when the stagnation (or even a
slight decrease) begins. Nevertheless, it is obvious that it is rather the inner
variance (controlled by τ ) than the trend that distinguishes the discovered
groups.
However, looking at the evolution of proportions of levels of categorical
outcomes the clusters acquire yet another interpretation. The thin blue
cluster, which experiences the highest volatility of the income, achieves the
highest proportions of positive categories, hence could be considered as
the cluster of wealthy households. On the other hand, the yellow cluster of
medium income volatility has higher proportions of negative categories. The
green cluster represents the vast majority of households of steady income
evolution and proportions slightly worse than the wealthy cluster.
Figure 2 presents the estimated effects of the urbanization level and the
highest achieved ISCED level. Clearly the capital city of Prague exhibits the
highest effect compared to the rural area. The probability of possession of
a car is the only one of decreasing trend with increasing population density.
As expected, the higher education level achieved within the household the
higher income is expected, which also relates to the increment in predictors
for categorical outcomes.
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Abstract: Bio-acoustic signal analysis often reduces to feature analysis on the
frequency structure in a lower dimensional space. This approach usually treats the
time-frequency bins of spectrograms as independent features or extracts common
statistics from waveforms. It is known to entail human perceptual bias that is
induced by the neglect of the relative relationship between the spectral shape of
vocalization and time as well as the dependence on domain knowledge of animals’
behaviours. In light of this, we propose a Nearest Neighbour Gaussian Process
(NNGP) model to account for the time varying components in the latent spectral
structure of bio-acoustic data.
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1 Motivation & Data

In comparative bio-acoustic studies, one area of interest is to understand
the acoustic structures of non-human primates in order to provide insights
on the evolution of the communication mechanism of our closest relatives.
The most common practices are feature engineering methods, which in-
volves selecting a set of basis-features for quantitative comparison. The
identification of meaningful features in the vocal repertoire relies on biolo-
gists to observe and interpret the behavioural contexts in which the animals
emit the signals. These interpretations are costly to acquire, inaccurate due
to human subjectivity and difficult to generalize for cross-species compar-
ison. Furthermore, feature selection always ignores the time-varying effect

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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of observed vocalizations on the latent acoustic structure. The aim of this
project is to propose a NNGP model that accounts for time in bio-acoustic
analysis. The dataset that will be available for model implementation are
vocal signals of lemurs that were recorded in Madagascar.

The data format is equivalent to the published data in (Valente, D. et al.
2019). Each recorded signal is represented by a spectrogram and lasts for a
unique duration of time that is measured in seconds. We refer to Figure 1
for a time-frequency representation of 3 signals of different durations. Fur-
thermore, each signal is categorized by a call-type label and a species label,
which are characterized by the behaviour of the lemur during emission and
the species to which the lemur belongs to, respectively. As an example,
Table 1 lists the number of recorded signals of 3 different species/call-type
groups of signals. The group labels are given by biologists.

FIGURE 1. Spectrograms of 3 observed signals with different durations

TABLE 1. Number of recorded signals of 3 different species/call-type categories

species call-type # signals

Indri indri (II) Clacson (CL) 622
Indri indri (II) Grunt (GR) 1145
Indri indri (II) Hum (HU) 418
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2 NNGP Hierarchical Model

Let G denote the total number of observed signals of one species/call-type
category. Denote each g-th observed signal by zg where g ∈ {1, 2, ..., G} .
Let t∗g be its respective duration. Each zg is a Gaussian field : zg =
{ zg(t, h) : (t, h) ∈ Ug } where (t, h) is a location in the observed spatial
domain Ug = Tg×Hg , Tg = [0, t∗g] is the time-axis andHg is the frequency-
axis. Each domain Ug is unique. Let wR = { w(t, h) : (t, h) ∈ R } be
a latent Gaussian field of zero mean over R = T × H : T = [0, 1] that
needs to be inferred from the data zg. This latent field wR is the inherent
acoustic structure of a given set of signals of the same species/call-type
category that has factored in the effects of each unique Ug. The model is :

zg(t, h) = µg + yg(t, h) + ϵg(t, h)

= µg + w(αg + βg t, h) + ϵg(t, h)

where yg(t, h) = w(αg +βg t, h) is a point value evaluated at the location
(αg + βg t, h) ∈ R; αg, βg are the time-distortion parameters i.i.d. ∀ g :
αg + βg t ∈ T = [0, 1] ∀ t ∈ Tg = [0, t∗g]; µg is the scalar mean i.i.d ∀ g;
and; ϵg(t, h) ∼ N(0, τ2g ) is the random noise i.i.d. ∀ g, t, h .

Let C(·) be the covariance kernel of that is specified by :

C((t1, h1), (t2, h2)) = σ2e−( ψt|t1−t2| + ψh|h1−h2| )

+ σ2
ce

−ψcdc(t1,t2,γ)

∀ (t1, h1), (t2, h2) ∈ R. The first component of C(·) describes how the acous-
tic structure changes across the time-frequency grid R. The second com-
ponent addresses the circular nature of time-frequency data. The distance
function dc(t1, t2, γ) is the periodic distance between two time points on T
such that dc(t1, t2, γ) ∈ [0, γ/2] ∀ t1, t2 ∈ T . The parameters of C(·) that
need to be inferred are the time and frequency decay : ψt, ψh ; the period-
icity and its decay : γ, ψc ; and ; the variances : σ, σc . WriteΣ as the exact
covariance matrix given by the kernel C(·) and θ = {ψt, ψh, ψc, γ, σ, σc}.
The hierarchical model is :

zg | µg, yg, τ2g ∼ GP( µg + yg , τ
2
g )

yg | θ, αg, βg ∼ GP(0,Σ)

wR | θ ∼ GP(0,Σ)

We refer to Figure 2 for a graphical representation of the relationship be-
tween wR, yg and zg. The relative relationship between the times given
by data and the spectral shape of wR is described by the time-distortion
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FIGURE 2. (From left to right) Spectrogram of wR, yg and zg respectively

parameters : αg, βg, which map the data points in Ug onto the latent
domain R. Since yg evaluates spatial locations in R, it is thus specified
by the same distribution of wR. The data zg can be marginalized over
yg = { w(αg + βg t, h) : (t, h) ∈ Ug }. The marginal distribution of zg
over yg is completely specified by the scalar mean µg, the noise τ2g , the
time-distortion parameters αg, βg and the kernel parameters θ. Let kg be
the number of data points zg(t, h) ∈ zg , the g-th observation. Define Dg

as the diagonal matrix of dimension kg×kg with τ2g as the diagonal entries.
The marginal distribution is :

z1

z2

...
zG

∼ GP

( µ1

µ2

...
µG

,


Σ1,1 +D1 Σ1,2 · · · Σ1,G

Σ2,1 Σ2,2 +D2 · · · Σ2,G

...
...

. . .
...

ΣG,1 ΣG,2 · · · ΣG,G +DG


)

Since inverting the high-dimensional exact covariance matrix Σ is too com-
putationally expensive, we resort to the approximated NNGP instead of the
exact GP. The idea of NNGP is that for Gaussian processes, if the covari-
ance kernel is monotonic with respect to the distance between two spatial
points, then only the data at neighbouring locations is needed for inference.
Define the neighbour set N (t, h) as the set of m points that are “closest”
to the point (t, h) such that the points in N (t, h) have the maximum cor-
relation with point (t, h) given by C(·).

Let n denotes the total number of points in wR and (ti, hi) ∈ R ∀ i =
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1, 2, ..., n. The density of wR that is expressed in terms of the full condi-
tional densities can then be approximated in terms of the neighbour sets
N (t, h). Write z = { z1, z2, ..., zg } . The marginal distribution of z
specified above can also be approximated similarly.

P(wR) = w(t1, h1)
n∏
i=2

P
(
w(ti, hi) | {w(tj , hj) : tj ≤ ti , hj ≤ hi}

)
≈ w(t1, h1)

n∏
i=2

P
(
w(ti, hi) | wN (ti,hi)

)
P(z) = z1(t1, h1)

G∏
g=1

kg∏
i=1

P
(
zg(ti, hi) | {zg′(tj , hj) : g′ ≤ g , αg′ + βg′ tj ≤ αg + βg ti , hj ≤ hi}

)
≈ z1(t1, h1)

G∏
g=1

kg∏
i=1

P
(
zg(ti, hi) | zN (αg+βgti,hi)

)
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Abstract: In this article we discuss some preliminary results related to a mul-
tivariate extension of the Bayesian nonparametric multiscale model introduced
in Stefanucci and Canale (2021). This model provides a flexible alternative to
classical Bayesian nonparametric methods for density estimation in Rd and can
be applied to both continuous and mixed data through the specification of appro-
priate kernels. By construction, the proposed method is able to model densities
characterized by either smoothness or localized abrupt changes. Posterior infer-
ence is possible via a Gibbs sampler.
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1 Introduction

Nonparametric density estimation in the Bayesian setting is dominated
by single-scale methods such as the Dirichlet process mixture of kernels
Escobar and West (1995). However, in many cases these methods fail to
adequately represent the underlying true density. One such case is when the
density displays a high degree of variation in its smoothness, for instance
when a broad density shows several local abrupt changes. In these settings
it would be beneficial to adopt a multiscale approach, in which the den-
sity is naturally modeled with an increasing degree of resolution. One such
proposal is the multiscale mixture of kernels introduced in Stefanucci and
Canale (2021), which offers a flexible alternative to the smoothed Pólya
tree model (Cipolli and Hanson, 2017). However, the application of the
multiscale mixture of kernels is bounded to univariate densities on X ⊆ R,
and it is not clear how a generalization to the multivariate setting might
be derived. Inspired by that construction, we show some preliminary re-

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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sults related to the application of the multiscale mixture of kernels in the
multivariate context.

2 Multivariate mixture of kernels

Assume that Y ∈ Y ⊆ Rd is a d-dimensional random variable, and that we
can represent its density f using a multiscale structure,

f(y) =
∞∑

s=0

2s∑

h=1

πs,hMVNd(y;µs,h,Σs,h), (1)

where MVNd(·;µ,Σ) denotes the multivariate Gaussian density with mean
µ ∈ Θµ = Rd and variance-covariance matrix Σ ∈ ΘΣ = S+

d×d, where S+
d×d

is the space of positive-definite symmetric matrices of dimension d × d.

{πs,h} is a sequence of random weights such that
∑∞

s=0

∑2s

h=1 πs,h = 1.
Since we want the multiscale model to adapt to the smoothness of the
data, we place a prior distribution on the parameters in (1). The prior
process for the weights {πs,h} is described in Canale and Dunson (2016)
and Stefanucci and Canale (2021), and it is summarized below. For each s
and h, we define a pair of random variables

Ss,h ∼ Beta
(
1− δ, α+ δ(s+ 1)

)
, Rs,h ∼ Beta(β, β), (2)

which represent the probability of stopping on the (s, h)-th node and taking
the right path at the (s, h)-th node of the binary tree, respectively. Then,
with the sequence of auxiliary random variables defined in (2), it is possible
to show that the weights {πs,h} are generated according to

πs,h = Ss,h

∏

r<s

(
1− Sr,⌈h2r−s⌉

)
Tshr, (3)

Using the above construction, it is possible to develop an efficient slice sam-
pler for performing posterior inference conditionally on the cluster alloca-
tions via Markov Chain Monte Carlo methods, as shown in Stefanucci and
Canale (2021). In order to complete the specification of the Gaussian mul-
tiscale model (1), we need to define a prior distribution for {µs,h} and Σs,h.
We thus define a prior distribution on {µs,h} in such a way that the loca-
tion parameter space Θµ ⊆ Rd is fully explored at each scale s of the binary
tree. This entails splitting the parameter space Θµ at scale s into 2s disjoint
rectangles Θµ;s,h and sample the location parameters from a multivariate
Gaussian distribution truncated to each of these sets. In order to traverse
the multivariate partition Ps,h = {Θµ;s,h : s = 1, 2, . . . , h = 1, . . . , 2s} us-
ing a binary tree, we first employ the Hilbert curve (Hilbert, 1891) to index
the 2s centers of a partition P̃s,h of [0, 1]d. Then, this partition is trans-
formed into the required set of rectangles Ps,h at each scale s. With this
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approach we are able to maintain the binary tree structure for the weights
described in (3) and apply the multiscale model in the multivariate set-
ting (1). The prior distribution on {Σs,h} is specified so that deeper scales
are associated on average to more concentrated kernels, which reflects the
increase in locality of the modelled features as s increases. This property
can be obtained by appropriately rescaling a fixed prior distribution on
Σs,h via a diagonal matrix C(s) = diag

(
c1(s), c2(s), . . . , cd(s)

)
such that

each ci(s) is decreasing as s → ∞ for i = 1, . . . , d. By choosing the fixed
prior distribution as a conjugate prior, we can take advantage of an efficient
Gibbs sampler for performing posterior inference on the model parameters,
conditionally on cluster allocations.

3 Simulation

We apply the model under simulated data by setting d = 2 in order to
demonstrate its performance both graphically and quantitatively. Specifi-
cally, for i = 1, . . . , 50 we repeatedly generate a sample of size n = 250 from
a mixture of normal and skew-normal distributions, which has been con-
structed in order to display a clear multiscale structure in its components.
This can be seen from its contour plot in Figure 1, which also shows the
average of the mean predictive densities for the multiscale model over the
50 simulations. We can see that the proposed multiscale approach can nat-
urally adapt to different degrees of smoothness of the underlying density,
and correctly represents both global and local features.

FIGURE 1. Contour plot of the true underlying density (black) and mean pos-
terior predictive densities using the multiscale model (orange), averaged over 50
simulations.
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We compare the mean posterior predictive density using our multiscale
approach with the Pitman-Yor mixture of Gaussian kernels, using a gen-
eralization of the default hyperparameters recommended in Cipolli and
Hanson (2017). A quantitative comparison of the two models can be done
for instance by using the LPML criterion. Table 1 shows that the multi-
scale approach results in a higher average LPML over the 50 replications
when compared to the Pitman-Yor mixture model. This suggests that the
multiscale model is able to offer an advantage over single-scale methods
when the underlying density shows concentrated local features, such as the
one in Figure 1. In light of these preliminary results, we believe that an
in-depth study of model performance using higher-dimensional simulated
and real datasets is warranted.

TABLE 1. Average LPML and related standard error over 50 simulations of the
data-generating process.

Model ave(LPML) sd(ave(LPML))

Multiscale -3.34 0.11
Pitman-Yor -3.58 0.10
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Abstract: This paper revisits a modelling technique previously introduced as the
‘generative linear mixture model’. An identifiability problem which was inherent
to the original work is solved, and a simulation is conducted to test the accuracy
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specifications around the cluster (mixture) centres which are linearly spanning the
data space. A real data application is provided, demonstrating how the resulting
latent variable can be employed as an efficient competitor to one-dimensional
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1 Introduction

This paper complements previous work by Lawson and Einbeck (2012), in
which random effect methodology was considered for the dimension reduc-
tion of high-dimensional data, xi ∈ Rm. This was achieved by projecting
the original data onto the estimated low-dimensional latent space, α+ βz,
where α, β ∈ Rm and z is a one-dimensional random effect represented by a
discrete mixture with mass points z1,...,zk and masses π1,...,πk, k = 1, ...,K.
The observed data are assumed to be generated from the ‘generative linear
mixture model’

xi = α+ βzk + εi (1)

where α+βzk are the cluster centers on the straight line, and εi ∼ N(0,Σ)
is the Gaussian noise added to the cluster centers. Under the original ap-
proach, the variance matrix Σ ∈ Rm×m is assumed to be a diagonal matrix,
diag(σ2

j ){1≤j≤m} and to be the same for all K components of the mixture.

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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The previous assumption on the variance disregards other geometric fea-
tures that clusters might have, such as clusters with different sizes, shapes
or orientations determined by the covariance. So, we consider several types
of variance matrix parametrizations. First, we can use the same diagonal
variance matrix for each component, as in Lawson and Einbeck (2012). Sec-
ondly, we can use different diagonal variance matrices for different compo-
nents, Σk ∈ Rm×m, diag(σ2

jk){1≤j≤m}, k = 1, . . . ,K. This type of variance
yields an improvement for estimating data that has clusters of different
sizes. Third, since the shape of clusters may not always be ball-shaped,
we consider a full variance-covariance matrix Σ ∈ Rm×m to be the same
for all components, Σ = Σ1 = . . . = Σk. Fourth, we consider different
full variance-covariance matrices for different components, Σk ∈ Rm×m,
k = 1, . . . ,K, which can be used on data that have clusters that differ by
shape and size. The EM algorithm will be used to estimate the parameters
mentioned above.

2 Methodology

2.1 EM algorithm

By using the posterior probability that xi belongs to component k,

wik =
πkfik∑K
l=1 πlfil

(2)

where for the (original) generative linear mixture model

fik =
1

(2π)m/2

1

|Σ|1/2
exp

(
−1

2
(xi − α− βzk)

TΣ−1(xi − α− βzk)

)
, (3)

one obtains the corresponding (expected) complete log-likelihood,

l =
n∑

i=1

K∑
k=1

wik log πk + wik log fik.

For the Maximization step, the equations for parameters, α̂, β̂, ẑk, π̂k and
σ̂j are obtained by Lawson and Einbeck (2012) by taking partial derivatives
of l with respect to each of the parameters. The following are the estimators
when using the variance parametrizations described in section 1, with (ii)
to (iv) being new contributions of this work,

(i) Σ ∈ Rm×m, diag(σ2
j ){1≤j≤m},

σ̂2
j =

1

n

n∑
i=1

K∑
k=1

wik(xij − α̂j − β̂j ẑk)
2
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(ii) Σk ∈ Rm×m, diag(σ2
jk){1≤j≤m}, k = 1, ...,K,

σ̂2
jk =

∑n
i=1 wik(xij − α̂j − β̂j ẑk)

2∑n
i=1 wik

(iii) Σ ∈ Rm×m, Σ = Σ1 =, ...,= Σk, k = 1, ...,K,

Σ̂ =
1

n

n∑
i=1

K∑
k=1

wik(xi − α̂− β̂ẑk)(xi − α̂− β̂ẑk)
T

(iv) Σk ∈ Rm×m, k = 1, ...,K,

Σ̂k =

∑n
i=1 wik(xi − α̂− β̂ẑk)(xi − α̂− β̂ẑk)

T∑n
i=1 wik

2.2 Identifiability

There is a product term of βzk in (3), which makes the parameters β,
zk unidentifiable. Furthermore, also α is unidentifiable as the same model
could be attained by translating all zk’s along the line. In order to fix this
identifiability problem, we standardize zk, by letting

K∑
k=1

πkzk = 0,
K∑

k=1

πkz
2
k − (πkzk)

2 = 1, (4)

where Var[zk] =
∑K

k=1 πkz
2
k − (πkzk)

2 (Marques da Silva Júnior et al.
2018). The first equation fixes the position of zk’s on the one-dimensional
coordinate system, solving the problem for α, and the second equation
solves the scale problem for β. Additionally, to identify the direction of the
latent variable, we enforce β̂1 ≥ 0.

3 Simulation

A simulation is set up to test the correctness of the methodology, after
implementing the identifiability fixes, under variance parametrization (i).
We use 2-dimensional data with three individual sample sizes n = 100,
n = 300, and n = 500, and generate 1000 data sets for each sample size.
Then we compare the average estimated values to the true values of the
parameters used to generate these data, the results are shown in Table 1
and Table 2. Overall, most biases are around 0.005, and no biases greater
than 0.05 were found. The estimated parameters are getting closer to the
true values as the sample size gets larger (Figure 1).
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FIGURE 1. Estimations of key parameter β with different sample sizes.

TABLE 1. Simulation Results for β, α and zk.

βtrue αtrue ztrue
(1.0000, 3.0000) (-1.0000, 1.0000) (2.8023, 1.1675, -0.6171)

n β̄est. ᾱest. z̄est.
100 (0.9915, 2.9974) (-0.9936, 1.0235) (2.8547, 1.2262, -0.6186)
300 (0.9986, 2.9982) (-0.9985, 1.0036) (2.8130, 1.1693, -0.6193)
500 (0.9966, 2.9899) (-0.9985, 0.9983) (2.8119, 1.1708, -0.6191)

4 Application

The data used here is the Soils data set (Fox et al. 2020). We construct
a data frame of six variables: Nitrogen, Phosphorous (in ppm), Calcium,
Magnesium, Phosphorous (in me/100 gm) and Sodium from the Soils data
set. The features in this data frame are on wildly different scales and in dif-
ferent units. We apply the methodology with variance parametrization (ii).
Fitting a model with k = 3 mass points leads to an AIC value of 828.4529.
When adding one mass point and refitting the model with k = 4, the AIC
value drops to 823.3411, and does not drop significantly when increasing
k further. Then we obtain the projected data points by x′

i =
∑K

k=1 wikẑk
(Aitkin, 1996). We fit a linear regression model with the variable Density
(in gm/cm3) as the response variable and the projected data as the predic-
tor. For fair comparison, we construct the first principal component scores

TABLE 2. Simulation Results for πk and σj .

πtrue σtrue

(0.0500, 0.2500, 0.7000) (0.5000, 2.0000)

n π̄est. σ̄est.

100 (0.0463, 0.2518, 0.7019) (0.5043, 1.9866)
300 (0.0507, 0.2504, 0.6988) (0.4966, 1.9892)
500 (0.0498, 0.2512, 0.6990) (0.4985, 1.9912)
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by projecting all data points onto the 1-dimensional space and use these
scores as the predictor. Table 3 shows the statistical measures that evaluate
the performance of these two regression models. We find that our approach
performs better for the non-scaled data, and that both approaches perform
similarly for the scaled data.

5 Conclusion

In the presented approach to dimension reduction, the original data are lin-
early approximated, and represented by a single latent variable of which we
conceptually think as a random effect. The distribution of the random effect
is described by a discrete mixture, whose parameters are estimated through
the EM algorithm along with the other model parameters. The mixture cen-
tres can be thought of as cluster centres positioned along a straight line
spanned through the original data space, where several parametrizations
are possible to describe the shape of the clusters around those centres. Af-
ter solving an identifiability problem with this methodology, a simulation
study has evidenced that parameters are accurately estimated. The real
data application demonstrated that the approach is competitive to Princi-
pal Component Regression (PCR) in the special case of a one-dimensional
approximation of the space of predictors, that it is not unduly affected by
scales or units, and in particular is robust to scaling.
Another important application of the proposed methodology would be the
joint ranking of multiple continuous variables (via the posterior random
effect) with view to the construction of league tables. This would how-
ever require a multi-level version of this methodology, which allows for at
least two levels as well as the inclusion of covariates on both. This work is
currently in progress.

TABLE 3. Statistical measures of fit for the two regression models.

Regression Model Non-scaled Data Scaled Data

Mixture-based Approach R2 : 0.7534 R2 : 0.7457
RMSE : 0.1084 RMSE : 0.1096

Principal Component Regression R2 : 0.6226 R2 : 0.7435
RMSE : 0.1378 RMSE : 0.1099
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Abstract: In this work we propose a Bayesian nonparametric model that exploits
probit stick-breaking processes for the estimation of causal effects in observational
studies. The proposed model leverages the flexibility of the nonparametric speci-
fication to overtake the imputation of the missing potential outcomes in the con-
text of causal inference, under the standard Rubin Causal Model. The proposed
model allows us to: (i) estimate the individual treatment effects, (ii) identify the
subgroups defined by similar conditional treatment effects, and (iii) characterize
the heterogeneity in the effects in a precise and interpretable manner.
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1 Introduction

Bayesian nonparametric (BNP) offers an interesting new perspective for
causal inference. The high flexibility of BNP methods is well-known in
many contexts, but their application to causality is quite recent. BNP is
seldom applied in causal inference due to the complex relationships be-
tween outcomes and confounders, that require computationally intensive
modeling of the joint distribution of all of the observed data (Oganisian,
2021). However, Roy et al. (2018) underline that recent developments in
computing capacity allow for new powerful Bayesian approaches in causal
inference.
Linero and Antonelli (2021) review BNP applications in causal inference.
In particular, Hahn et al. (2020) develop a rework of the Bayesian Addi-

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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tive Regression Trees (BART) model (introduced in Chipman et al., 2010)
that re-parameterizes the conditional average treatment effect directly in-
corporating an estimate of the propensity function. The usage of infinite
mixture models has been proposed in the causal inference literature as well.
Schwartz et al. (2011) apply the Dirichlet process (DP) (Escobar and West,
1995) mixtures in the context of principal stratification, Roy et al. (2018) in
missing at random confounders context, and Oganisian et al. (2021) use the
DP mixture for the zero-inflated regressions. However, the DP has never
been used in causal inference with the aim to group the observations based
on the heterogeneity in the effects.
To account for this shortcoming of the literature on BNP in causal infer-
ence, we propose to use the probit stick-breaking processes (Rodriguez and
Dunson, 2011) to allow the observed confounders to influence the probabil-
ity of each subject to be part of subgroups with higher/lower heterogeneity
in the causal effects. The proposed method allows us to group subjects
with similar treatment effects and, thanks to the posterior predictive dis-
tributions, to impute subgroup-specific (and individual-specific) treatment
effects. The proposed approach provides a flexible, yet computationally
scalable, algorithm that incorporates the confounders in the weights of the
infinite mixture of the outcome probability distribution.

2 Probit Stick-breaking Process for Causal Inference
with Observational Data

We observe n units (read, individuals), each of which can potentially be
assigned a treatment. For each unit i we observe the treatment level (Ti = 1
for treatment and Ti = 0 for control), a p-dimensional vector, Xi, of back-
ground characteristics (confounders), and the outcome Yi. Accordingly to
the Rubin Causal Model (Rubin, 1974), we postulate the existence of two
potential outcomes: Yi(0) which is the potential outcome when unit i is as-
signed to the control, and Yi(1) when the same unit is assigned to the treat-
ment. In causal inference, one wants to measure the causal effect on the out-
come caused by the treatment, namely the difference between the potential
outcome under treatment and under control for each unit: τi = Yi(1)−Yi(0).
Unfortunately, one can never observe both potential outcomes as any unit
can not be simultaneously assigned to both treatment and control. Rubin
(1974) refers to the missing potential outcomes as counterfactual outcomes.
In this context of partial exchangeability, the nonparametric mixtures pro-
vide effective and powerful tools to impute the missing potential outcomes
via the estimation of the marginal distributions of Y (0) and Y (1), the impu-
tation of the counterfactual outcomes and the estimation of the treatment
effect for each unit (τ̂i). Furthermore, the probit stick-breaking (Rodriguez
and Dunson, 2011) permits to incorporate the confounders in the weights
of the nonparametric mixture that defines the distribution of the potential
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outcome and allows for the grouping of units into subgroups defined by
similar imputed τ̂i.
In particular, the model is defined as

Yi(0)|Xi ∼
∑
l≥1

ω0l(Xi)N (η0l, σ
2
0), Yi(1)|Xi ∼

∑
l≥1

ω1l(Xi)N (η1l, σ
2
1),

ωtl(Xi) = Φ(αtl(Xi))
∏
r<l

[1− Φ(αtr(Xi))], for t = {0, 1}.

Where, for t = {0, 1}, {ωtl}l≥1 is an infinite sequence of weights such that

ωtl ≥ 0 and
∑+∞

l=1 ωtl = 1; ({ηtl)}l≥1, σ
2
t )

iid∼ H with H called the base
distribution; Φ(·) is the Gaussian cumulative distribution function; and
α(·) is a parametric function.

2.1 Simulation study

The ability of the proposed model to identify the data heterogeneity and
precisely estimate the causal effects is evaluated in a simulation study. In
particular, we focused in two scenarios. Both scenarios involve a binary
treatment, confounding variables, and continuous outcomes. In the first
scenario (reported in the left panel of Figure 1) the outcome decreases due
to the treatment, with different intensity within different subgroups defined
by the confounders. In the second scenario (reported in the right panel of
Figure 1) the outcome under control is different in each subgroup, while
the outcome under treatment being identically distributef in each subgoup.
In observational studies, we can observe only the marginal distribution
of the observed potential outcomes (the histograms in Figure 1), but we
want to reconstruct the join distribution (the scatter-plots in Figure 1), in
order to have both the potential outcomes for each of n units. Clearly, it is
impossible to observe both the outcomes for the units, so the information
about the correlation between the two marginal distribution can not be
learned directly from the data. However this information can be acquired
by confounders.
Essentially, the observed outcome are used to estimated the proposed
model, and the distribution of missing outcomes are compute successively.
In particular, in this second step, the allocation of each unit to the groups
is driven by the observed counfounders X, that are included in the the
weights of infinite mixture model, while the value of the missing outcome
is simulated from the assigned kernels of the mixture model.
Table 1 reports the estimated causal effect τ , obtained as the posterior
mean of the difference between the outcomes under treatment and under
control, over the units. Where for each unit, the posterior distribution of
τi is a function the observed outcome and the posterior distribution of the
missing outcome. Notably the results of the proposed model are competitive
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FIGURE 1. Simulation studies: first scenario (left) and second scenario (right).
The scatter-plots report both the potential outcomes. The black points are the
units with Y (0) observed and Y (1) missing (with marginal distribution reported
in the x-axis histogram) and the blue triangles are the units with Y (1) observed
and Y (0) missing (with marginal distribution reported in the y-axis histogram).

TABLE 1. Bias and mean square error (MSE) of causal effect τ , computed with
the proposed model (PSB) and BART, for the two scenarios in Figure 1. Mean
and standard deviation (in the brackets) are reported.

Bias MSE
PSB BART PSB BART

1st scenario -0.0068 -0.0073 0.3019 0.3027
(0.0289) (0.0285) (0.0165) (0.0168)

2nd scenario 0.0019 0.00133 0.2005 0.2015
(0.0214) (0.0218) (0.0106) (0.0110)

with BART model (Chipman et al., 2010), for both the described scenarios,
with values for bias and mean square error close to zero.
Moreover, the peculiarity of the proposed model is the ability to identify
groups of homogeneous units. Specifically, an estimate of the partition is
obtained by minimizing the variation of information loss function as de-
scribed in Wade and Ghahramani (2018). The estimated partition is com-
pared with the true paritition assumed when simulating the data through
the Rand adjusted index (Rand, 1971), a cluster comparison criterion. The
range of Rand index is from 1, when the estimated partition is the same of
real partition, and 0, when the estimated and real partition do not match.
With the proposed model we obtain values close to 1 for Rand index.
Conditionally on the estimated partition, we can compute a subpopulation-
specific causal effect τ . In Figure 2 the causal effect, measured within each
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estimated group with a significant (more than 0.1%) percentage of obser-
vations, are reported, with bias and mean square error (MSE). The small
values of bias and MSE show how the proposed model can identify success-
fully the the heterogeneity between units in the causal effect.
Within groups, we can compute measure that characterize the units, as the
percentage of observations reported in Figure 2, or the distributions of the
obsevred covariates X, or various treatment effects.

FIGURE 2. Causal effect (CE) τ measured within significant groups in the sim-
ulated scenarios. Bias, mean square error (MSE), and percentage of observations
are reported, for each group. A group is considered significant if it contains more
than 0.1% of the units.
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Abstract: Sports injury research has gained increased interest in professional
sports, including professional football. Injuries are common and modelling and
understanding their occurrence would assist in developing tailored prevention
programs. This work aims at modelling the recurrence of injuries in an elite
male football team participating in LaLiga. We propose the use of piece-wise
exponential additive mixed models for modelling such data and to study the
correlation between injuries and within-player variability.

Keywords: piece-wise exponential additive mixed models; survival analysis;
sports analytics; football injuries; recurrent events.

1 Introduction

Statistical modelling of football injuries has become an increasing area of
interest in the field of sports injury research, as it has in professional foot-
ball clubs. Injury data poses many challenges for statistical modelling. An
overview of existing strategies to monitor and predict occurrence and dura-
tion of sports injuries comprising classical statistical and machine learning
models is given by Ruddy et al. (2019). In this work, we study the risk
and timing of football related injuries in an elite male football team par-
ticipating in LaLiga, taking into account that injuries are of time varying
and recurrent nature. Given that players sustain more than one injury over
time, we aim at studying whether a player’s risk of further injury is the
same as for the first injury, and also whether these risks vary across players.
In this regard, piece-wise exponential additive mixed models (PAMMs) of-
fer a flexible and useful methodological toolbox for recurrent time-to-event

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Overview of injuries that occurred during the 17-18 and 18-19 sea-
sons. Timeline of the football players is depicted horizontally: red cross indicates
the exact injury date, blue circle the recovery date and bold black line indicates
the duration of the injury (time-loss).

data, that takes advantage of advanced inferential and algorithmic methods
that have been developed for generalized additive mixed models (Bender
et al. 2018, Ramjith et al. 2021).

2 Data

Our application is based on a cohort of an elite male football club. Injury
data was recorded during the seasons 2017-2018 and 2018-2019 for 36 play-
ers. The data, collected by the club’s medical staff, includes the time spent
training and time competing in games (in minutes) and the time loss in-
curred by non-contact injuries. Figure 1 shows an overview of the injuries
sustained by each player, with their dates of injury and recovery indicating
their onset, together with the player’s follow-up period. The median expo-
sure time per player was 30828 minutes. A total of 72 non-contact time-loss
injuries resulting in 1595 days of absence were recorded. This is equivalent
to an incidence of 3.9 injuries and an injury burden of 86.2 days lost, per
1000 hours of exposure, respectively.

3 Modelling approach

In essence, the follow-up period (0, tmax] is partitioned into J intervals with
J + 1 cut points, i.e. 0 = κ0 < κ1 < . . . < κJ = tmax and the hazard is
assumed to be constant in each interval. The formulation of the hazard rate
of the i-th injury (event) of the l-th player is given by:
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λl,i(t|xl(t), l) := exp (f(xlj(t), tj , l)) = λli,j (1)

for all t ∈ (κj−1, κJ ], t > 0 and l = 1, . . . , L; i = 1, . . . , nl, where
t is the time of interest, tj a fixed timepoint in the j-th interval (e.g.
tj := κj), x(t) ∈ RP potentially time-varying covariates and f(·) the ef-
fect of (time-dependent) covariates on the hazard, that can be potentially
(non-linearly) time-varying and injury-specific. This general representation
allows to study different dependence structures arising in football injury
data.
Here, relaxing some of the terms in (1), we investigate the following models:

1. Stratified hazards model: assuming different baseline hazards for
each of the injury events and thus considering the dependence induced
by the previous injuries.

λl,i(t|xl) := λ(t|xl, l, i) = λ0,i(t) exp(x
⊤
l β) =

= exp
(
β0,i + f0,i(tj) + x⊤

l β
)
, ∀t ∈ (κj−1, κj ].

2. Shared frailty model: assuming a common baseline hazard for all
events (λ0,i = λ0), but accounting for within-player correlation by
introducing a frailty term.

λl,i(t|xl) := λ(t|xl, bl, i) = λ0(t) exp(x
⊤
l β + bl) =

= exp
(
β0 + f0(tj) + x⊤

l β + bl
)
, ∀t ∈ (κj−1, κj ],

where b ∼ N(0,D) is a Gaussian random effect.

The key idea of PAMMs is that by using penalized splines for fitting the
baseline hazard (e.g. by P-splines; Eilers and Marx, 1996), the problem of
the arbitrary choice of the cut-points defining the intervals is overcome, i.e.
the choice of the number and placement of knots for the construction of
basis functions.

4 Application

We fitted stratified hazards and shared frailty models to study whether
the risk of injury varies (i) across injuries, i.e. is the hazard of further
injuries different to the one for initial injury, and/or (ii) across players,
i.e. do some players inherently have higher or lower hazard to get injured
(frailty). We used pammtools R package (Bender et al. 2018) for model
fitting and visualisation.
We found that stratifying hazards by injury recurrence, a two level cate-
gorical variable (first or recurrent injury, as categories), mostly captured
within-player variability and that the frailty term was not needed. The best
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FIGURE 2. Estimated baseline hazards by a stratified PAM by two factor vari-
ables: injury recurrence (whether first or recurrent) and season (17-18 or 18-19)

fit, based on AIC criterion, was found using two additive factor-smooth in-
teraction terms: stratifying by injury recurrence and season.
Figure 2 shows estimated baseline hazards of the aforementioned model.
The risk of a recurrent injury found to be higher than the risk of sustaining
a first injury in both seasons. Besides, 17-18 season injury rates were higher
than the 18-19 rates, and in 17-18 season hazards rate of being injured of
a first or recurrent injury were significantly different in the first 50 hours
of exposure.

5 Discussion

We illustrated how to account for dependencies induced by recurrent in-
juries and within-person variability through a case study. The rate of in-
jury occurrence varied across injuries and time, being higher for subsequent
ones. No significant within-player variability was found. PAMM framework
showed to be an adequate and comprehensive modelling approach for foot-
ball injury data, which allowed to study recurrent events very flexibly.
Further extensions of the model could provide more insights into the data,
such as the inclusion of performance related (e.g. workload) time-dependent
covariates effect along different cycles of a training program.
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